Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Классификация и структура белков



Белки выполняют в организме очень важные функции. К ним в пер­вую очередь следует отнести: структурную, каталитическую, сократи­тельную, транспортную, регуляторную, защитную, а также энергетиче­скую. На долю белков в среднем приходится 1/6 часть от массы тела человека.

По строению белки - это высокомолекулярные азотсодержащие со­единения, состоящие из аминокислот. В состав белковых молекул мо­гут входить десятки, сотни и тысячи остатков аминокислот. Однако все белки, независимо от происхождения, содержат лишь 20 видов амино­ кислот Строение 20 разновидностей аминокислот, входящих во все бедаи, можно отразить следующей формулой:

r

........ i

H-C-nh2

У всех аминокислот можно выделить общую, одинаковую часть мо­лекулы, содержащую амино- и карбоксильную группы (выделена пунк­тирной рамкой). Другая же часть молекулы, обозначенная как радикал (R), у каждой из 20 аминокислот имеет специфическое строение, и аминокислоты отличаются друг от друга только радикалами. (Класси­фикация, формулы и некоторые свойства аминокислот приведены в приложении 1.)

Аминокислоты, соединяясь друг с другом пептидной связью, обра­зуют длинные неразветвленные цепи - полипептиды. Пептидная связь возникает при взаимодействии карбоксильной группы одной амино­кислоты и аминогруппы другой аминокислоты с выделением воды:

H, CH-COOH

r1 r2 nh2-ch-cooh +nh2-ch-cooh _____ _

2о

  ■о н :
nh2 -сн —;с —n —i
Пешидная связь

 

Пептидные связи обладают высокой прочностью, их образуют все аминокислоты.

В состав белковой молекулы входит один или несколько полипептидов.

Кроме пептидных, в белках обнаруживаются еще дисульфидные, водородные, ионные и другие связи.

Эти химические связи могут возникать между остатками аминокис­лот, которые входят в разные участки одного и того же полипептида или же находятся в разных полипептидах, но обязательно пространст­венно сближены. В первом случае благодаря таким связям полипеп­тидная цепь принимает определенную пространственную форму. Во втором случае с помощью непептидных связей полипептиды объеди­няются в белковую молекулу.

В итоге молекула белка является объемным, трехмерным образова­нием, имеющим определенную пространственную форму. Для удобства рассмотрения пространственного строения молекулы белка условно выделяют четыре уровня ее структурной организации.

Первый уровень пространственной организации белковой молекулы называется первичной структурой и представляет собой последова­тельность расположения аминокислот в полипептидных цепях. Фикси­руется эта структура прочными пептидными связями. Другими слова­ми, первичная структура характеризует химическое строение полипеп­тидов, образующих белковую молекулу. Каждый индивидуальный бе­лок имеет уникальную первичную структуру.

Второй уровень пространственной организации - вторичная структура - описывает пространственную форму полипептидных це­пей. Например, у многих белков полипептидные цепи имеют форму спирали. Фиксируется вторичная структура дисульфидными и различ­ными нековалентными связями.

Третий уровень пространственной организации - третичная струк­тура - отражает пространственную форму вторичной структуры. На­пример, вторичная структура в форме спирали, в свою очередь, может укладываться в пространстве в виде глобулы, т. е. имеет шаровидную или яйцевидную форму. Стабилизируется третичная структура слабы­ми нековалентными связами, а также дисульфидными связями и поэто­му является самой неустойчивой структурой.

Пространственная форма всей белковой молекулы получила назва­ние конформация. Поскольку в молекуле белка наряду с прочными ковалентными связями имеются еще менее прочные (нековалентные) связи, то его конформация характеризуется нестабильностью и может легко изменяться. Изменение пространственной формы белка влияет на его биологические функции. Конформация, находясь в которой бе­лок обладает биологической активностью, называется нативной. Лю­бые воздействия на белок, приводящие к нарушению этой конформа- ции, сопровождаются частичной или полной утратой белком его биоло­гических свойств. Изменение конформации в небольших пределах об­ратимо и является одним из механизмов регуляции биологических функций белков в организме.

Четвертичной структурой обладают только некоторые белки. Чет­вертичная структура - это сложное надмолекулярное образование, со­стоящее из нескольких белков, имеющих свою собственную первич­ную, вторичную и третичную структуры. Каждый белок, входящий в состав четвертичной структуры, называется субъединицей. Например, белок крови гемоглобин состоит из четырех субъединиц двух типов (а и Р) и имеет строение а2рг- Ассоциация субъединиц в четвертичную структуру приводит к возникновению нового биологического свойства, отсутствующего у свободных субъединиц. Например, формирование четвертичной структуры в ряде случаев сопровождается появлением каталитической активности, которой нет у отдельных субъединиц.

Объединяются субъединицы в четвертичную структуру за счет сла­бых нековалентных связей, и поэтому четверичная структура неустой­чива и легко диссоциирует на субъединицы. Образование и диссоциа­ция четвертичной структуры является еще одним механизмом регуля­ции биологических функций белков.

Из всех структур белка кодируется только первичная. За счет ин­формации, заключенной в молекуле ДНК, синтезируются полипептид­ные цепи (первичная структура). Высшие структуры (вторичная, тре­тичная, четвертичная) возникают самопроизвольно в соответствии со строением полипептидов.

Классификация белков

Белки делятся на простые (протеины) и сложные (протеиды). Простые белки состоят только из аминокислот. К простым белкам, имеющимся в организме человека, относятся альбумины, глобули­ны, гистоны, белки опорных тканей. В молекуле сложного белка, кроме аминокислот, еще имеется неаминокислотная часть, назы­ваемая простетической группой. В зависимости от строения про- стетической группы выделяют такие сложные белки, как фосфопро- теиды (содержат в качестве простетической группы фосфорную ки­слоту), нуклеопротеиды (содержат нуклеиновую кислоту), глико- протеиды (содержат углевод), липопротеиды (содержат липоид), хромопротеиды (содержат окрашенную простетическую группу) и др.

Возможна и другая классификация белков, вытекающая из их про­странственной формы. В этом случае белки разделяются на два боль­ших класса: глобулярные и фибриллярные.

Молекулы глобулярных белков имеют шарообразную или эллипсо­идную форму. Примером таких белков являются альбумины и глобу­лины плазмы крови.

Фибриллярные белки представляют собою вытянутые молекулы, у которых длина значительно превышает их диаметр. К таким бел­кам прежде всего необходимо отнести коллаген - самый распро­страненный белок у человека и высших животных, на долю которо­го приходится 25-30% от общего количества белков организма. Коллаген обладает высокой прочностью и эластичностью. Этот бе­лок широко распространен в организме, он входит в состав соедини­тельной ткани, и поэтому его можно обнаружить в коже, стенках со­судов, мышцах, сухожилиях, хрящах, костях, во внутренних орга­нах.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.