Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Обоснование и описание методов



Задание

На курсовое проектирование

по дисциплине "Планирование и организация экспериментов"

 

Задача проекта: организовать "экспериментальные" исследования некоторого объекта с целью поиска минимального значения выходной величины Y. Объект имеет входные управляющие воздействия X1, X2, X3, …, Xn.

 

X1 Объект исследования Y

X2

 

Xn

 

 

Имеются заданные начальные условия. Необходимо проводя экстремальные "эксперименты" на программном эмуляторе объекта получить такие режимы его работы, при которых достигается минимальное значение величины Y. При этом следует построить и обосновать стратегию "экспериментальных" работ, выбрать и обосновать применяемые методы (2 различных).

В записке к проекту привести обоснование и описание стратегии организации экспериментальных работ, используемых методов, "экспериментальные" результаты включая промежуточные, результаты их статистической обработки, принимаемые в процессе экспериментирования решения, их обоснования, полученные оптимальные результаты X1*, X2*, X3*, …, Xn*, Y*.

Обосновать полученное решение с точки зрения: локальный найден минимум или глобальный?

Необходимо подобрать реальный процесс, для которого могла бы быть поставлена аналогичная содержательная задача, и описать его с обоснованием постановки задачи.

 

Содержание

 

1 Задачи оптимизации
2Обоснование и описание методов
3Проведение экспериментов
3.1 Метод Гаусса-Зайделя
3.2 Метод поиска «с наказанием случайностью»
4 Реальный процесс
Список литературы

 

 

Задачи оптимизации

 

Главной задачей и конечной целью решения большого числа разнообразных исследовательских проблем управления, проектирования и планирования обычно является достижение поддержание экстремальных, т.е. наилучших, показателей. Процесс нахождения и поддержания наилучших значений целевой функции объекта называется оптимизацией. Критерий оптимизации y обычно задается. Этот критерий должен удовлетворять следующим основным условиям: 1) нести в себе существенную информацию об объекте, о качестве процесса; 2) измеряться с достаточной точностью; 3) носить обобщенный характер, т.е. отражать свойства и качества процесса в целом. Решение задачи оптимизации осуществляют с помощью экспериментального поиска. Для этого сначала осуществляют изучение характера поверхности отклика в районе первоначально выбранной точки факторного пространства (с помощью специально спланированных «пробных» опытов). Затем совершают «рабочее» движение в сторону экстремума, причем направление движения определяют по результатам пробных опытов. Такое движение может осуществляться путем ряда этапов, которые могут объединяться в «циклы».

После выхода в район экстремума оптимальную точку можно уточнить одним из двух способов: 1) постановкой дополнительных, особым образом спланированных опытов; 2) получением математической модели второго или более высокого порядка и последующим решением системы уравнений.

 

Обоснование и описание методов

 

Рассмотрим два метода поисковой оптимизации: «Метод с наказанием случайностью» и «Метод Гаусса-Зайделя». Эти методы различаются способами постановки пробных опытов и определения направления движения к экстремуму, а также способами организации самого рабочего движения к экстремуму.

Задача надежности отыскания экстремума усложняется, если на объект воздействуют случайные помехи έ. Для повышения надежности результатов применяют специальные методы, например в каждой запланированной точке факторного пространства выполняют по нескольку параллельных опытов. Кроме того, разные поисковые методы в равных условиях обладают различной помехоустойчивостью.

Метод Гаусса-Зайделя

Данный метод относится к многомерной безградиентной оптимизации, где величина и направление шага к оптимуму формируется однозначно по определенным детерминированным функциям в зависимости от свойств критерия оптимальности в окрестности текущей точки без использования производной, т.е. градиента. Все алгоритмы имеют итерарационный характер и выражаются формулой: xj+1= xj+f(R (xj)).

Основная особенность рассматриваемого метода - отсутствие вычисления градиента критерия оптимальности. Ряд методов прямого поиска базируется на последовательном применении одномерного поиска по переменным или по другим задаваемым направлениям, что облегчает их алгоритмизацию и применение.

Метод Гаусса-Зайделя заключается в последовательном поиске оптимума R(x) поочередно по каждой переменной. Причем после завершения перебора всех переменных (т.е. после завершения одного цикла) опять в общем случае приходится перебирать все переменные до тех пор, пока не придем к оптимуму. В ряде случаев удается получить решение всего за один цикл (для сепарабельных функций). В случаи тесной нелинейной взаимосвязи переменных для получения решения приходится делать очень много циклов.

Метод обладает низкой эффективностью в овражных функциях, может застревать в «ловушках», особенно при сравнительно больших шагах h при поиске оптимума по каждой переменной, очень чувствителен и к выбору системы координат. Метод прост в реализации. На эффективность метода влияет порядок чередования переменных.

К достоинствам данного метода относят: 1) очевидная простота стратегии и наглядность; 2) высокая помехозащищенность в смысле выбора направления движения.

К недостаткам относят: 1) при большом числе влияющих n факторов путь к главному экстремуму оказывается обычно долгим; 2) в условиях крупного промышленного производства оказывается трудным застабилизировать n-1 факторов на длительное время; 3) если поверхность отклика имеет сложную форму (узкие гребни, овраги и т.п.), то использование метода может привести к ложному ответу на вопрос о месте расположения экстремума; 4) метод не дает информации о взаимодействиях факторов.

Условием окончания поиска является малость изменения критерия оптимальности за один цикл или невозможность улучшения критерия оптимальности ни по одной из переменных.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.