Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Критерий А.Н. Колмогорова



 

Для применения критерия А.Н. Колмогорова ЭД требуется представить в виде вариационного ряда (ЭД недопустимо объединять в разряды). В качестве меры расхождения между теоретической F(x) и эмпирической Fn(x) функциями распределения непрерывной случайной величины Х используется модуль максимальной разности

 

dn = max|F(x) - Fn(x)|. (8)

 

А.Н. Колмогоров доказал, что какова бы ни была функция распределения F(x) величины Х при неограниченном увеличении количества наблюдений n функция распределения случайной величины dn асимптотически приближается к функции распределения

. Иначе говоря, критерий А.Н. Колмогорова характеризует вероятность того, что величина dn не будет превосходить параметр λ для любой теоретической функции распределения. Уровень значимости α выбирается из условия

, в силу предположения, что почти невозможно получить это равенство, когда существует соответствие между функциями F(x) и Fn(x). Критерий А.Н. Колмогорова позволяет проверить согласованность распределений по малым выборкам, он проще критерия хи-квадрат, поэтому его часто применяют на практике. Но требуется учитывать два обстоятельства.

Во-первых, в точном соответствии с условиями его применения необходимо пользоваться следующим соотношением

 

где

 

Во-вторых, условия применения критерия предусматривают, что теоретическая функция распределения известна полностью (известны вид функции и ее параметры). Но на практике параметры обычно неизвестны и оцениваются по ЭД. Это приводит к завышению значения вероятности соблюдения нулевой гипотезы, т.е. повышается риск принять в качестве правдоподобной гипотезу, которая плохо согласуется с ЭД (повышается вероятность совершить ошибку второго рода). В качестве меры противодействия такому выводу следует увеличить уровень значимости α , приняв его равным 0,1 – 0,2, что приведет к уменьшению зоны допустимых отклонений.

Пример 3.2. Проверить с помощью критерия А.Н. Колмогорова гипотезу о том, что ЭД, представленные в табл. 2.3, подчиняются нормальному распределению при уровне значимости a =0,1.

Решение. Исходные данные и результаты вычислений сведены в табл. 3. Необходимые вычисления можно провести с использованием табличного процессора: значение эмпирической функции распределения Fn(xi)=i/44; значения теоретической функции F(xi) – это значение функции нормального распределения в точке xi.

 

Таблица 3

i  
xi 25,79 25,98 25,98 26,12 26,13 26,49 26,52 26,60 26,66 26,69 26,74  
Fn(xi) 0,023 0,046 0,068 0,091 0,114 0,136 0,159 0,182 0,204 0,227 0,250  
F(xi) 0,036 0,055 0,055 0,073 0,075 0,144 0,151 0,170 0,188 0,196 0,211  
dn+ 0,014 0,009 0,013 0,018 0,038 0,008 0,008 0,012 0,016 0,032 0,039  
dn- 0,036 0,032 0,010 0,005 0,016 0,031 0,014 0,011 0,006 0,009 0,016  
i  
xi 26,85 26,90 26,91 26,96 27,02 27,11 27,19 27,21 27,28 27,30 27,38  
Fn(xi) 0,273 0,296 0,318 0,341 0,364 0,386 0,409 0,432 0,455 0,477 0,500  
F(xi) 0,246 0,263 0,267 0,284 0,305 0,337 0,371 0,378 0,406 0,412 0,447  
dn+ 0,027 0,032 0,051 0,057 0,059 0,050 0,038 0,054 0,049 0,065 0,053  
dn- 0,004 0,010 0,028 0,034 0,036 0,027 0,015 0,031 0,026 0,042 0,031  
i  
xi 27,40 27,49 27,64 27,66 27,71 27,78 27,89 27,89 28,01 28,10 28,11  
Fn(xi) 0,523 0,546 0,546 0,591 0,614 0,636 0,659 0,682 0,705 0,727 0,750  
F(xi) 0,456 0,492 0,555 0,561 0,583 0,610 0,656 0,6560 0,701 0,731 0,735
dn+ 0,067 0,053 0,013 0,030 0,031 0,026 0,003 0,026 0,003 0,004 0,015
dn_ 0,044 0,031 0,010 0,007 0,008 0,003 0,019 0,003 0,020 0,0270 0,008
i
xi 28,37 28,38 28,50 28,63 28,67 28,90 28,99 28,99 29,03 29,12 29,28
Fn(xi) 0,773 0,795 0,818 0,841 0,864 0,886 0,909 0,932 0,955 0,977 1,000
F(xi) 0,817 0,819 0,851 0,879 0,888 0,928 0,939 0,940 0,944 0,954 0,968
dn+ 0,044 0,024 0,032 0,038 0,024 0,042 0,030 0,008 0,010 0,024 0,032
dn- 0,067 0,046 0,055 0,061 0,047 0,064 0,053 0,031 0,013 0,001 0,009
                                     

 

В данном примере максимальные значения dn+ и dn одинаковы и равны 0,067. Из табл. П.1 при α = 0,1 найдем λ =1,22. Для n = 44 критическое значение Поскольку величина max dn = 0,067 меньше критического значения, гипотеза о принадлежности выборки нормальному закону не отвергается.

 

Критерий Мизеса

 

В качестве меры различия теоретической функции распределения F(x) и эмпирической Fn(x) по критерию Мизеса (критерию ω2) выступает средний квадрат отклонений по всем значениям аргумента x

(3.9)

Статистика критерия

(3.10)

 

При неограниченном увеличении n существует предельное распределение статистики n2. Задав значение вероятности α можно определить критические значения n2(α ). Проверка гипотезы о законе распределения осуществляется обычным образом: если фактическое значение nwn2 окажется больше критического или равно ему, то согласно критерию Мизеса с уровнем значимости α гипотеза Но о том, что закон распределения генеральной совокупности соответствует F(x), должна быть отвергнута.

Пример 3.3. Проверить с помощью критерия Мизеса гипотезу о том, что ЭД, представленные вариационным рядом, табл. 2.3, подчиняются нормальному распределению при уровне значимости α = 0,1.

Решение. Исходные данные и результаты вычислений представлены в табл. 3.4.

 

Таблица 3.4

i
xi 25,79 25,98 25,98 26,12 26,13 26,49 26,52 26,60 26,66 26,69 26,74
Fn(xi) 0,011 0,034 0,057 0,080 0,102 0,125 0,148 0,171 0,193 0,216 0,237
F(xi) 0,036 0,055 0,055 0,073 0,075 0,144 0,151 0,170 0,188 0,196 0,211
Δi 0,618 0,429 0,003 0,047 0,726 0,378 0,009 0,000 0,025 0,409 0,742
i
xi 26,85 26,90 26,91 26,96 27,02 27,11 27,19 27,21 27,28 27,30 27,38
Fn(xi) 0,261 0,284 0,307 0,330 0,352 0,375 0,398 0,421 0,443 0,466 0,489
F(xi) 0,246 0,263 0,267 0,284 0,305 0,337 0,371 0,378 0,406 0,412 0,447
Δi 0,231 0,439 1,572 2,071 2,243 1,467 0,717 1,790 1,391 2,866 1,755
i
xi 27,40 27,49 27,64 27,66 27,71 27,78 27,89 27,89 28,01 28,10 28,11
Fn(xi) 0,511 0,534 0,557 0,580 0,602 0,625 0,648 0,671 0,693 0,716 0,739
F(xi) 0,456 0,492 0,555 0,561 0,583 0,610 0,656 0,656 0,701 0,731 0,735
Δi 3,103 1,765 0,003 0,332 0,374 0,216 0,063 0,213 0,067 0,238 0,013
I
xi 28,37 28,38 28,50 28,63 28,67 28,90 28,99 28,99 29,03 29,12 29,28
Fn(xi) 0,761 0,784 0,807 0,830 0,852 0,875 0,898 0,921 0,943 0,966 0,989
F(xi) 0,817 0,819 0,851 0,879 0,888 0,928 0,939 0,940 0,944 0,954 0,968
Δi 3,090 1,230 1,908 2,461 1,271 2,791 1,737 0,381 0,001 0,149 0,432

В этой таблице:

Fn(xi) = (i – 0,5)/44 – значение эмпирической функции распределения;

F(xi) – значение теоретической функции распределения, соответствует значению функции нормального распределения в точке xi;

Δi =1000[Fn(xi) – F(xi)]2 . Здесь масштабный множитель 1000 введен для удобства отображения данных в таблице, при расчетах он не используется.

Критическое значение статистики критерия Мизеса при заданном уровне значимости равно 0,347, табл. П.2. Фактическое значение статистики , что меньше критического значения. Следовательно, гипотеза Н0 не противоречит имеющимся данным.

Достоинством критерия Мизеса является быстрая сходимость к предельному закону, для этого достаточно не менее 40 наблюдений в области часто используемых на практике больших значений n (а не несколько сот, как для критерия хи-квадрат).

Сопоставляя возможности различных критериев, необходимо отметить следующие особенности. Критерий Пирсона устойчив к отдельным случайным ошибкам в ЭД. Однако его применение требует группирования данных по интервалам, выбор которых относительно произволен и подвержен противоречивым рекомендациям. Критерий Колмогорова слабо чувствителен к виду закона распределения и подвержен влиянию помех в исходной выборке, но прост в применении. Критерий Мизеса имеет ряд общих свойств с критерием Колмогорова: оба основаны непосредственно на результатах наблюдения и не требуют построения статистического ряда, что повышает объективность выводов; оба не учитывают уменьшение числа степеней свободы при определении параметров распределения по выборке, а это ведет к риску принятия ошибочной гипотезы. Их предпочтительно применять в тех случаях, когда параметры закона распределения известны априори, например, при проверке датчиков случайных чисел.

При проверке гипотез о законе распределения следует помнить, что слишком хорошее совпадение с выбранным законом распределения может быть обусловлено некачественным экспериментом (“подчистка” ЭД) или предвзятой предварительной обработкой результатов (некоторые результаты отбрасываются или округляются).

Выбор критерия проверки гипотезы относительно произволен. Разные критерии могут давать различные выводы о справедливости гипотезы, окончательное заключение в таком случае принимается на основе неформальных соображений. Точно также нет однозначных рекомендаций по выбору уровня значимости.Рассмотренный подход к проверке гипотез, основанный на применении специальных таблиц критических точек распределения, сложился в эпоху "ручной" обработки ЭД, когда наличие таких таблиц существенно снижало трудоемкость вычислений. В настоящее время математические пакеты включают процедуры вычисления стандартных функций распределений, что позволяет отказаться от использования таблиц, но может потребовать изменения правил проверки. Например, соблюдению гипотезы Н0 соответствует такое значение функции распределения критерия, которое не превышает значение доверительной вероятности 1– α (оценка статистики критерия соответствует доверительному интервалу). В частности, для примера 3.1 значение статистики критерия хи-квадрат равно 1,318. А значение функции распределения хи-квадрат для этого значения аргумента при трех степенях свободы составляет 0,275, что меньше доверительной вероятности 0,95. Следовательно, нет оснований отвергать нулевую гипотезу.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.