Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Приемники излучения фотоэлектрических датчиков



К приемникам излучения на основе внешнего фотоэффекта относятся электровакуумные или газонаполненные фотоэлементы, фотоэлектронные умножители и передающие электронно-лучевые трубки. К приемникам излучения на основе внутреннего фотоэффекта относятся фоторезисторы, фотодиоды и фототриоды. Все приемники излучения являются электронными и полупроводниковыми приборами и изучаются в курсе электроники. Здесь будут рассмотрены только краткие физические основы их работы и характеристики тех приемников излучения, которые нашли применение в системах автоматики.

Рис. 2. Схема включения фотоэлемента

На рис. 2 приведена схема включения вакуумного фотоэлемента. Анод А и катод К фотоэлемента находятся в стеклянном баллоне, из которого откачан воздух. Когда световой поток падает на катод, покрытый активным слоем, электроны получают энергию, позволяющую им вылететь из катода. Это явление называется фотоэлектронной эмиссией. Под действием источника питания с ЭДС Е между катодом и анодом создается электрическое поле, которое и заставляет электроны перемещаться от катода к аноду.

В электрической цепи создается электрический ток, называемый фототоком. Когда действие света прекращается, ток в фотоэлементе и внешней электрической цепи исчезает.

Зависимость фототока от светового потока называется световой характеристикой. Эта характеристика при постоянных значениях Е и R практически линейная. Фотоэлемент характеризуется также чувствительностью, которая равна отношению фототока (в микроамперах) к световому потоку (в люменах). В газонаполненных фотоэлементах благодаря ионизации молекул газа, заполняющего баллон, фототок увеличивается. Поэтому чувствительность газонаполненных фотоэлементов больше, чем у вакуумных. Однако световая характеристика вакуумного фотоэлемента более стабильна, менее зависима от колебаний напряжения питания, чем у газонаполненных элементов. Поэтому для целей автоматического измерения чаще применяются вакуумные фотоэлементы.

Промышленностью серийно выпускаются электровакуумные фотоэлементы типа СЦВ (сурьмяно-цезиевый, вакуумный) и типа Ф разных модификаций. Например, фотоэлемент типа Ф-1 имеет наилучшую чувствительность при λ=0,215 мкм, Ф-3 — при λ = 0,750 мкм, Ф-5 — при λ = 1,1 мкм. Это означает, что фотоэлемент Ф-1 реагирует на ультрафиолетовое излучение, Ф-3 — на видимый свет, Ф-5 — на инфракрасный цвет. Фотоэлементы работоспособны и при других длинах волн, но выходной сигнал при этом будет меньше. На рис. 3, а показан фотоэлемент типа СЦВ-4, имеющий размеры диаметр 27 мм и длину 62 мм и интегральную чувствительность 80 мкА/лм. Фотоэлектронные умножители (ФЭУ) в отличие от фотоэлементов имеют дополнительные электроды. Благодаря вторичной эмиссии электронов из этих электродов чувствительность ФЭУ во много раз превышает чувствительность фотоэлементов. Однако для ФЭУ требуется и значительно большее напряжение питания.

Рис. 3. Конструкции фотоэлементов (а, б, в, г) и спектральные характеристики (д)

Фоторезисторсостоит из светочувствительного слоя полупроводника толщиной около микрометра, нанесенного на стеклянную или кварцевую пластинку. Токосъемные электроды выполнены с применением драгоценных металлов. При внутреннем фотоэффекте под действием светового потока в полупроводнике появляются дополнительные свободные электроны, благодаря чему увеличивается электропроводность, а сопротивление фоторезистора уменьшается.

Промышленностью выпускаются фоторезисторы типов СФ, ФР, ФС различных модификаций. В них используются полупроводниковые материалы: сернистый кадмий, сернистый свинец, германий, индий и др.

На рис. 3, б, в, г показан внешний вид некоторых фоторезисторов, а на рис. 3, д — спектральные характеристики фоторезисторов из некоторых полупроводниковых материалов. По вертикальной оси отложена чувствительность в относительных единицах, а по горизонтальной — длина волны монохроматического (т. е. определенного цвета) светового потока. Вид кривой (острый пик или пологая вершина) зависит и от технологии изготовления полупроводникового материала.

Надо отметить, что чувствительность схем с фоторезисторами во много раз больше, чем схем с фотоэлементами. Например, фоторезистор типа СФЗ-2А имеет в освещенном состоянии ток в 3 мА. При отсутствии света и напряжении на фоторезисторе в 10 В через него протекает ток в 2 мкА. Таким образом, кратность изменения сопротивления может достигать 3 10-3/(2 10-6) = 1500.

Для автоматического измерения фоторезисторы используют чаще всего в мостовой схеме. Для исключения погрешности из-за потока излучения фона в два плеча моста включают одинаковые фоторезисторы, один из которых воспринимает только излучение фона, а другой освещается одновременно измеряемым объектом и фоном.

К недостаткам фоторезисторов следует отнести их инерционность. Она заключается в том, что при освещении фоторезистора фототок не сразу достигает своего конечного значения, а при прекращении освещения ток снижается до первоначального значения также не мгновенно, а по истечении определенного времени. Постоянная времени фоторезисторов составляет десятые и сотые доли секунды. Еще один недостаток фоторезисторов — зависимость сопротивления от температуры.

Фотодиодаминазываются полупроводниковые приборы, основанные на внутреннем фотоэффекте и использующие одностороннюю проводимость p-n-перехода.

Различают два режима работы фотодиодов: фотогальваническийи фотодиодный. В фотогальваническом режиме не требуется источник питания, поскольку при освещении р-п-перехода появляется ЭДС, под действием которой возникает ток во внешней цепи. В этом режиме фотодиод непосредственно преобразует энергию света в электрическую энергию. При освещенности в 8 103 лк фотоЭДС составляет около 0,1 В. В фотодиодном режиме к фотодиоду прикладывается напряжение обратной полярности, т. е. такое, при котором обычный диод не проводил бы ток. При освещении фотодиода (его n-области) обратный ток резко увеличивается, фотодиод начинает проводить ток в обратном направлении.

Рис. 4. Конструкции и устройство фотодиодов

Промышленностью выпускаются фотодиоды типа ФД различных модификаций. В качестве материала чувствительного слоя используются германий, кремний, селен. На рис. 4, а, б показаны конструкции некоторых фотодиодов, на рис. 4, в — его устройство. На металлическую пластинку 1 наносится слой полупроводника 2, поверх которого осаждается полупрозрачная пленка золота 3. Между золотой пленкой и полупроводником создается запирающий слой. Поверх пленки 3 накладывается защитный слой прозрачного лака 4. С внешней цепью фотодиод соединяется с помощью выводов, одним из которых является контактное металлическое кольцо 5.

При замыкании фотодиода на сопротивление нагрузки по внешней цепи потечет ток, зависящий от светового потока. Такой режим работы фотодиода называется фотогальваническим. В этом режиме фотодиод непосредственно преобразует энергию света в электроэнергию. Чувствительность фотодиода к суммарному световому потоку при коротком замыкании селеновых фотоэлементов довольно велика и составляет 0,5 мА на 1 лм. При увеличении внешнего сопротивления в цепи фотодиода его чувствительность падает. Инерционность фотодиодов примерно на порядок меньше, чем у фоторезисторов.

Фотодиоды чаще используются не для целей автоматического измерения, а в схемах фотореле. Для этих же целей используются и фототранзисторы, совмещающие свойства фотодиода и усилительного транзистора.




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.