Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Устройство струнных датчиков



Для обеспечения требуемой точности, чувствительности и надежности струнных датчиков необходимо выбрать соответствующий материал струны. Этот выбор определяется как условиями применения датчика, так и способом возбуждения колебаний струны. К материалу струны предъявляются следующие требования: высокая прочность при вибрационных нагрузках, определенное значение температурного коэффициента линейного расширения (либо малое, либо равное этому же коэффициенту конструкционного материала датчика), независимость упругих свойств от времени и температуры.

Возможно применение как ферромагнитных, так и неферромагнитных материалов струны. При использовании ферромагнитной струны применяются электромагнитные возбудители колебаний. Под действием тока, протекающего по обмотке неподвижного электромагнита, к струне прикладывается сила притяжения, выводящая ее из состояния покоя. При использовании неферромагнитной струны применяются магнитоэлектрические возбудители колебаний. При пропускании через струну тока она испытывает силу притяжения (или отталкивания) к полюсам постоянного магнита.

Наибольшее распространение в струнных датчиках с электромагнитным возбуждением получили стальные струны из круглой рояльной проволоки диаметром 0,1—0,3 мм. При длине в 40—60 мм в таких струнах возбуждаются колебания с частотой 700—2000 Гц. В последнее время используются более гибкие и поддающиеся более надежному креплению стальные ленты толщиной 0,08—0,1 мм и шириной 1—2 мм. Частота колебаний стальной ленты достигает 3 кГц и выше. Стальные струны и ленты работают в режиме заданной длины. В этом режиме струна крепится к относительно более массивному упругому первичному преобразователю, изготовленному также из стали. Одинаковый температурный коэффициент линейного расширения материала струны и материала конструкции датчика позволяет уменьшить температурную погрешность.

В режиме заданной длины струна очень чувствительна к нестабильности крепления, а при использовании неферромагнитных струн обычно требуется изолировать хотя бы один из концов струны, что ухудшает механическую стабильность крепления. Поэтому неферромагнитные струны обычно используют в режиме заданной силы. В качестве материала применяют бериллиевую бронзу, вольфрамовые сплавы, а также специальный железокобальтовый сплав. Струны из вольфрамовых сплавов бывают как круглыми, так и лен-iочными. Другие материалы обычно используют в виде лент.

При выборе размеров струны исходят из следующих противоречивых требований. При малой длине уменьшаются габариты датчиков, повышаются чувствительность и виброустойчивость. Однако при этом увеличивается погрешность из-за несовершенства крепления и влияния собственной жесткости струны. Для обеспечения малой погрешности от собственной жесткости следует стремиться к выполнению условия , где l — длина струны, d — диаметр круглой или толщина ленточной струны. Обычно не рекомендуется выбирать длину струны l менее 20 мм. Сечение струны выбирается по требуемому пределу изменения натяжения и целесообразному механическому напряжению в струне. Например, для бронзы рекомендуется выбирать напряжение не более 0,5 % от модуля упругости.

Конструкция и материал крепления струны играют первостепенную роль для обеспечения стабильности струнного датчика. При малых механических напряжениях (до 200 Н/мм2) более хорошие результаты дают способы крепления, показанные на рис. 2. Крепление с помощью винта (рис. 2, а) приводит к значительному смятию струны и ухудшению стабильности. Более хорошие результаты дает крепление в щели (рис. 2, б). Ленточные струны закрепляют между двумя хорошо обработанными и подогнанными параллельными плоскостями (рис. 2, в). Таким же способом можно крепить и круглые струны. Для высокоточных датчиков применяют более сложные конструкции крепления струны. Для снятия механических напряжений при установке крепления используют температурное старение в виде нескольких циклов нагрева до 80—100 °С (по 4—8 ч каждый).

С помощью струнных датчиков возможно автоматическое измерение силы, давления, перемещения, ускорения, температуры и других неэлектрических величин. На базе струнных датчиков созданы также цифровые электроизмерительные приборы постоянного и переменного тока. Диапазон изменения выходного сигнала — частоты— составляет 300—500 Гц. Для исключения помех промышленной частоты стремятся увеличить минимальное значение частоты. Высокая частота облегчает и преобразование ее в цифровой код. Например, для получения погрешности дискретности счета, не превышающей 0,1 %, при частоте в 1000 Гц достаточно производить счет импульсов выходного сигнала датчика в течение 1 с. Наибольшее распространение получили струнные тензометры. Рассмотрим схему измерения с помощью струнного тензометра (рис. 3, а). В корпусе 1 закреплена струна 2, начальное натяжение которой может устанавливаться с помощью регулировочного винта 3. Колебания струны возбуждаются с помощью электромагнита 4. Выходной сигнал приемника 5, в качестве которого используется, например, электромагнитный трансформаторный датчик, измеряется частотомером. В струнных тензометрах применяются струны длиной 20—200 мм с начальным механическим напряжением 300—400 Н/мм2 и максимальным до 800 Н/мм2. С их помощью может быть обеспечена чувствительность измерения относительной деформации в 1 10-6.

Рис. 2. Способы крепления струны

Рис. 3. Струнный тензометр

На рис. 3, б показаны диаграммы напряжения, подаваемого на обмотку электромагнита 4, и напряжения, снимаемого с приемника 5 в режиме работы по запросу. Периодически посылаются сигналы запроса в виде одиночного импульса, а сигнал ответа имеет вид затухающих колебаний с частотой f, определяемой силой, приложенной к струне. Как следует из уравнения (1), эта зависимость имеет нелинейный характер. С помощью некоторых конструктивных мер можно уменьшить эту нелинейность. Но в датчиках с одной струной довольно трудно обеспечить нелинейность меньше чем 2—3 % от диапазона изменения частоты.

 

Рис. 4. Дифференциальный струнный датчик

Для увеличения точности преобразования и повышения линейности используют двухструнные дифференциальные датчики. Преобразователь силы в частоту (рис. 4) состоит из двух струн 1 и 2, размещенных под малым углом друг к другу и натянутых с силой 2F0, создаваемой пружиной 3.

Пружина 4 уравновешивает начальное натяжение F0 в струне 2. Измеряемая сила F, приложенная к рычагу 5, перераспределяет суммарную силу натяжения 2F0, увеличивая натяжение F2 струны 2 и уменьшая натяжение F1 струны 1. Под струнами 1 и 2 расположены возбудители колебаний 6 и 7 и приемники колебаний 8 и 9. Приемники подключены на вход усилителей 10 и 11, авозбудители — на выход этих усилителей. Напряжения с усилителей 10 и 11 с частотами соответственно f1 и f1 поступают на смеситель 12 и фильтр 13, на выходе которого получается сигнал разностной частоты . Для уменьшения нелинейности струна, работающая на укорочение, выбирается несколько большей длины.




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.