Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Акустооптические модуляторы)



 

Рисунок 3.29 – Акустооптический модулятор

 

Работа этих модуляторов основана на акустооптическом эффекте – изменении показателя преломления вещества Δn под воздействием ультразвуковых волн (УЗВ). Наиболее ярко этот эффект проявляется в ряде материалов: тяжёлом оптическом стекле (флинтглассе); диоксиде теллура (TeO2); молибдонате свинца (PbMoO4) и др.

Для получения УЗВ используют генератор с большой акустической мощностью Pа, которая поступает на пьезокристалл. При прямом пьезоэффекте механические колебания резонатора передаются твёрдому телу, по которому распространяются УЗВ. В результате в твёрдом теле создаются зоны сжатия и разрежения плотности ρ вещества, что приводит к изменению показателя преломления Δn

Если кристалл осветить потоком света от источника света (ИС), то созданные УЗВ зоны сжатия и разряжения будут для света представлять собой дифракционную решетку (ДР) с периодом Λ. В результате произойдёт дифракция света, появятся дифракционные максимумы и минимумы. Когда генератор УЗВ выключен, кристалл прозрачен для света, и свет от источника сигнала поступает на выход схемы. Когда генератор УЗВ включён, то свет преломляется дифракционной решёткой и не попадает на выход АОМ. Таким образом, дифрагированный свет будет модулирован по интенсивности с частотой модуляции ультразвука.

Недостатком АОМ является ограниченная частота модуляции – не выше 1 ГГц.

 

3.7 Приемники оптиче­ского излучения

Фотоприёмники служат для преобразования оптического сигнала в электрический.Их изготавливают обычно из полупроводникового материала. В основе работы фотоприёмников лежит явление внутреннего фотоэффекта, при котором в результате поглощения полупроводником фотонов с энергией, превышающей ширину запрещённой зоны, происходит переход электронов из валентной зоны в зону проводимости (генерация электронно-дырочных пар).

При наличии электрического напряжения с появлением электронно-дырочных пар от воздействия оптического сигнала появляется электрический ток.

Требования, предъявляемые к фотоприёмникам:

1) высокая чувствительность;

2) требуемые спектральные характеристики и широкополосность;

3) низкий уровень шумов;

4) требуемое быстродействие;

5) длительный срок службы;

6) использование в интегральных микросхемах.

В ВОСП в качестве фотоприёмников получили распространение: p-i-n фотодиоды и лавинные фотодиоды.

 

3.7.1 Принцип работы р – i – n фотодиода

 

 

Рисунок 3.30 – Принцип работы р – i – n фотодиода

Для p-i-n фотодиода характерно наличие i-слоя (слаболегированного полупроводника n-типа) между слоями p+ и n+ типа (знак‘+’ означает сильное легирование). i-слой называют обеднённым слоем, поскольку в нём нет свободных носителей. На p-i-n структуру подаётся напряжение с обратным смещением U0 (по сравнению со светоизлучающим диодом).

Сильное легирование крайних слоёв делает их проводящими, и максимальное значение электрического поля создаётся в i-слое. Но поскольку нет свободных носителей в i-слое, нет и электрического тока. При наличии падающего излучения на i-слой в нём образуются свободные электронно-дырочные пары. Они под действием электрического поля быстро разделяются и двигаются в противоположных направлениях к своим электродам (положительно заряженные дырки направляются к минусу источника, а отрицательно заряженные электроны – к плюсу источника), образуя электрический ток. При изготовлении фотодиодов стремятся делать p+ и n+-слои как можно тоньше (не более 0,3 мкм), а обеднённую область достаточно большой протяженности (порядка 40 мкм), чтобы она полностью поглощала весь падающий свет. Однако часть падающего излучения испытывает френелевское отражение от фоточувствительной поверхности из-за скачка показателей преломления на границе между этой поверхностью и средой.

 

Таблица 3.2 – Элементы, используемые для создания фотоприёмников

Материал Диапазон принимаемых длин волн λ, нм.
Кремний Si 400-1000
Германий Ge 600-1600
GaAs 800-1000
JnGaAs 1000-1700
JnGaAsP 1100-1600

 

Для уменьшения отражения приёмную поверхность обедненного слоя покрывают антиотражающим слоем – специально подобранным прозрачным материалом толщиной около λ/4 и показателем преломления, равным , где n1 и n2 – показатели преломления i-слоя и воздуха. Данные ФД просты по структуре и сравнительно дёшевы.

 

3.7.2 Принцип работы лавинного фотодиода

 

 

Главным отличием лавинного фотодиода (ЛФД) от обычного фотодиода является внутреннее усиление сигнала, базируемое на лавинном электронном умножении сигнала. Если структура слоёв у обычных ФД имеет вид p+- i -n+, то у ЛФД добавляется дополнительный р-слой. (p+- i - p - n+).

Рисунок 3.31 – Лавинный фотодиод

 

Лавинное умножение достигается за счёт увеличения напряжения смещения до величины близкой к пробойной. Профиль распределения легирующих примесей выбирается так, чтобы наибольшее сопротивление, а следовательно, и наибольшую напряженность электрического поля имел p-слой. При воздействии света на i-слой образуются электронно-дырочные пары. Благодаря электрическому полю происходит направленное движение носителей к соответствующим полюсам. При попадании свободных электронов из i-слоя в p-слой их ускорение становится более ощутимым из-за высокого электрического поля в p-слое. Ускоряясь в зоне проводимости p-слоя, такие электроны накапливают энергию достаточную, чтобы выбить другие электроны из валентной зоны в зону проводимости. При этом возникает явление ударной ионизации. Суть этого явления состоит в том, что носители, проходящие через p-слой, порождают новых носителей, которые в свою очередь так же вызывают порождение очередных носителей. Лавинное умножение носителей (усиление фототока) происходит из-за того что: электроны, достигшие p-слоя, сталкиваются с атомами и выбивают из них вторичные электроны, которые благодаря высокому напряжению ускоряются, снова сталкиваются с атомами, возникают новые электроны и т. д. то есть происходит лавинообразный процесс, в результате которого резко увеличивается число электронов. От одного фотона может образоваться до 1000 электронов

В отличие от фототока у p-i-n фотодиода фототок в ЛФД получается в М раз большим.

Iф ЛФД =М× Iф pin ; (3.5)

где М – коэффициент лавинного умножения (усиления).

Реальная величина усиления для кремниевых ЛФД – 50..100, для германиевых ЛФД – 2…15, для арсенидгалиевых – 10…35. Чувствительность ЛФД в М раз выше токовой чувствительности p-i-n фотодиодов. Коэффициент лавинного умножения М определяется по эмпирической формуле:

, (3.6)

где U – напряжение внешнего обратного смещения,

– напряжение пробоя ЛФД, обычно ≈ 100 В, но может достигать в некоторых устройствах нескольких сот вольт,

n – коэффициент преломления, n = 1,5 ÷ 4 для кремния и n = 2,5 ÷ 9 для германия.

Обратное напряжение Uв обычно выбирают равным 0,95*Uпр от напряжения пробоя. Коэффициент лавинного умножения М сильно зависит от температуры.

Достоинствами ЛФД являются высокий коэффициент усиления, высокая чувствительность и быстродействие.

Недостатками ЛФД являются: более высокое рабочее напряжение по сравнению с p-i-n фотодиодами (до 400 В); повышенная температурная чувствительность коэффициента умножения, что требует использования специальной электрической цепи, вырабатывающей необходимое рабочее напряжение, а также системы термостабилизации. Недостатком ЛФД является также то, что случайная природа лавинообразного нарастания тока приводит к шуму, который в отличие от полезного сигнала усиливается пропорционально M (≈ в М2,1). В результате этого оптимальное значение М выбирают обычно в пределах от 30 до 100.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.