Два латинских квадрата L=(lij) и K=(kij) n-го порядка называются ортогональными, если все упорядоченные пары (lij,kij) различны. Пример двух ортогональных латинских квадратов и соответствующие им упорядоченные пары:
Эйлер называл такие квадраты "полными". В его честь в научной литературе их раньше называли "эйлеровыми" или "греко-латинскими" (так как Эйлер использовал буквы греческого алфавита для квадрата, ортогонального латинскому).
Ортогональные латинские квадраты существуют для любого n, не равного 2 и 6.
Латинский квадрат L n-го порядка имеет ортогональный ему квадрат тогда и только тогда, когда в L существует n непересекающихся трансверсалей.
Особый интерес в связи с многочисленными приложениями вызывают множества из нескольких попарно ортогональных латинских квадратов n-го порядка. Максимально возможная мощность N(n) такого множества равна n-1, в этом случае множество называется полным.
При n, стремящемуся к ∞, величина N(n) тоже стремится к ∞.
Для n, являющегося степенью простого числа, всегда существует полное множество попарно ортогональных латинских квадратов, его можно взаимооднозначно сопоставить с конечной проективной плоскостью порядка n. Для его построения применяется метод Боуза, использующий для заполнения квадратов значения многочленов вида fa(x,y)=ax+y при ненулевом a над полем .[3] Пример построения полного множества попарно ортогональных латинских квадратов 4-го порядка (d – корень примитивного многочлена x2+x+1 над ):
Если n ≡ 1 (mod 4) или n ≡ 2 (mod 4) и свободная от квадрата часть числа n содержит хотя бы один простой множитель p ≡ 3 (mod 4), то для таких n полного множества попарно ортогональных латинских квадратов не существует.
Известные нижние оценки числа N(n) при n < 33 приведены в следующей таблице (выделены оценки, которые могут быть улучшены):
Нижние оценки числа N(n)
n
N(n)≥
Построение ортогональных квадратов – сложная комбинаторная задача. Для её решения применяются как алгебраические конструкции, так и комбинаторные (трансверсали, ортогональные массивы, дизайны, блок-схемы, тройки Штейнера и др.) Существует несколько подходов к решению этой задачи, их можно разделить на две группы. К первой группе относятся методы, основанные на выборе базового латинского квадрата, к которому отыскиваются изотопные ортогональные латинские квадраты. Например, пять попарно ортогональных латинских квадратов 12-го порядка были найдены в результате построения четырех ортоморфизмовабелевой группы, являющейся прямым произведением циклических групп порядков 6 и 2.[2]
Ко второй группе относятся методы, использующие для построения ортогональных латинских квадратов комбинаторные объекты (включая сами латинские квадраты) меньших порядков. Например, два латинских квадрата 22-го порядка были построены Bose и Shrikhande на основе двух дизайнов 15-го и 7-го порядка.
Частичные квадраты
Квадрат, в котором каждый элемент множества M в каждой строке и в каждом столбце встречается не более одного раза, называется частичным.
Задача распознавания того, может ли частичный квадрат быть дополнен до латинского, является NP-полной.
Введено понятие критического множества, соответствующего частичному квадрату, который однозначно может быть дополнен до латинского, причем никакое его подмножество условию однозначности не удовлетворяет.[1] Мощность C(n) критического множества для квадратов размеров n × n известна для n < 7:
Мощность критического множества
n
С(n)
Латинские квадраты находят широкое применение в алгебре, комбинаторике, статистике, криптографии, теории кодов и многих других областях.