по дисциплине: «Математический анализ планов эксперимента»
на тему: «Латинские квадраты»
Проверила: Доржиева А.А.
Выполнила: Гаськова А.С.
Улан-Удэ
2015 г
Содержание
1 Понятие латинского квадрата 3
2 История исследований латинских квадратов 3
3 Отношения эквивалентности на множестве латинских квадратов 6
4 Ортогональные латинские квадраты 7
5 Частичные квадраты 9
Список использованных источников 10
Понятие латинского квадрата
Латинский квадрат n-го порядка — таблица L=(lij) размеров n × n, заполненная n элементами множества M таким образом, что в каждой строке и в каждом столбце таблицы каждый элемент из M встречается в точности один раз. Пример латинского квадрата 3-го порядка:
В настоящее время в качестве множества M обычно берётся множество натуральных чисел {1,2,…,n} или множество {0,1,…,n-1}, однако Леонард Эйлер использовал буквы латинского алфавита, откуда латинские квадраты и получили своё название.[1]
Латинские квадраты существуют для любого n, достаточно взять таблицу Кэли аддитивной группы кольца : lij= (i+j-1) mod n.
История исследований латинских квадратов
Впервые латинские квадраты (4-го порядка) были опубликованы в книге «Шамс аль Маариф» («Книга о Солнце Гнозиса»), написанной Ахмадом аль-Буни в Египте приблизительно в 1200 году.
Пары ортогональных латинских квадратов впервые были упомянуты Жаком Озанамом в 1725 году.[2] В книге, представляющей собой сборник задач по физике и математике, приведена следующая задача:
Необходимо разместить 16 игральных карт из тузов, королей, дам и валетов всех четырёх мастей в виде квадрата так, чтобы все масти и карты всех достоинств встречались в каждой строке и в каждом столбце ровно один раз.
Эта задача имеет 6192 решения (если дополнительно потребовать, чтобы и диагонали квадрата удовлетворяли тому же условию, то число решений уменьшится в 6 раз и станет равным 1152).
Важной вехой в истории исследований латинских квадратов стала работа Эйлера[1]. Он занимался в ней методами построения магических квадратов и предложил метод, основанный на паре ортогональных латинских квадратов. Исследуя такие пары, Эйлер выяснил, что проблема их построения подразделяется на три случая в зависимости от остатка от деления числа n на 4. Он предложил способы построения пар ортогональных квадратов для n, делящихся на 4 и для нечётных n. Очевидно, что при n = 2 таких пар не существует. Ему не удалось построить пары ортогональных латинских квадратов для n = 6, 10 и он высказал гипотезу о том, что не существует пар ортогональных квадратов для n = 4t+2. Для n = 6 он сформулировал «задачу о 36 офицерах»:
Необходимо разместить 36 офицеров шести различных полков и шести различных воинских званий в каре так, чтобы в каждой колонне и в каждом ряду был ровно один офицер каждого полка и каждого воинского звания.
В 1890 году Кэли вывел формулу для числа латинских прямоугольников из двух строк (частный случай классической комбинаторной «задачи о встречах», поставленной P. Montmort в 1708 году).[3]
В 1900 году гипотеза Эйлера для n = 6 была подтверждена G. Tarry.[4] Он построил все 9408 нормализованных латинских квадратов, разбил их на 17 типов и показал, что при любом их сочетании невозможно построить пару ортогональных квадратов. Таким образом, он отрицательно решил «задачу о 36 офицерах».
В 1922 году MacNeish впервые применил теоретико-групповой подход к решению задач относительно латинских квадратов.[5] В частности, он предложил метод конструирования латинских квадратов порядка n1•n2 из латинских квадратов порядков n1 и n2, при этом свойство ортогональности сохраняется.
В 1925 году Fisher предложил использовать ортогональные латинские квадраты для планирования сельскохозяйственных экспериментов.[6]
В 1920—1930 годы стали интенсивно изучаться неассоциативные алгебраические структуры, что привело, в частности, к созданию теории квазигрупп, тесно связанной с изучением латинских квадратов, так как между латинскими квадратами и таблицами Кэли квазигрупп существует взаимно-однозначное соответствие.
В 1959 году Bose и Shrikhande построили 2 ортогональных латинских квадрата для n = 22, а в 1960 году они же и Parker построили с использованием ЭВМ минимальный контрпример для n = 10. Таким образом, спустя 177 лет гипотеза Эйлера была опровергнута.[7]
Число латинских квадратов[править | править вики-текст]
Точная формула для числа L(n) латинских квадратов n-го порядка неизвестна. Наилучшие оценки для L(n) дает формула
[8]
Каждому латинскому квадрату можно поставить в соответствие нормализованный (или редуцированный) латинский квадрат, у которого первая строка и первый столбец заполнены в соответствии с порядком, заданном на множестве M. Пример нормализованного латинского квадрата:
Число R(n) нормализованных латинских квадратов n-го порядка в n!(n-1)! раз меньше, чем L(n).
Точные значения величины L(n) известны для n от 1 до 11:[4]