применяют следующие способы и средства защиты или их комбинации:
- защита временем;
- защита расстоянием;
- уменьшение параметров излучения в самом источнике излучения;
- экранирование источника излучения;
- экранирование рабочего места;
- рациональное размещение установок в рабочем помещении;
- рациональные режимы эксплуатации установок и работы персонала;
- применение предупреждающей сигнализации (световая, звуковая);
- выделение зон излучения;
- применение средств индивидуальной защиты.
Защита временем предусматривает ограничение времени пребывания человека в рабочей зоне, если интенсивность облучения превышает нормы, установленные при условии облучения в течение смены, и применяется, когда нет возможности снизить интенсивность облучения до допустимых значений другими способами.
Защита расстоянием применяется, когда невозможно ослабить интенсивность облучения другими мерами, в том числе и сокращением времени пребывания человека в опасной зоне. В этом случае увеличивают расстояние между источником излучения и обслуживающим персоналом. Защита расстоянием может применяться как в производственных условиях, так и в условиях населенных мест. Этот вид защиты основан на быстром уменьшении интенсивности поля с расстоянием. В ближней зоне напряженности электрической и магнитной составляющих поля убывают в зависимости от расстояния следующим образом:
; .
Здесь i – ток в проводнике, А;
R – расстояние от точки наблюдения до источника излучения, м;
ω – угловая частота поля, ω = 2πf,
где f – частота поля, Гц.
уменьшение мощности излучения достигается регулировкой передатчика (генератора); его заменой на менее мощный, если позволяет технология работ, применением специальных устройств – аттенюаторов, которые поглощают, отражают или ослабляют энергию на пути от генератора к антенне, внутри ее или при изменении угла направленности антенны.
Уменьшение излучения в источнике достигается за счет применения согласованных нагрузок и поглотителей мощности. Поглотители мощности, ослабляющие интенсивность излучения до 60 дБ (106 раз) и более, представляют собой коаксиальные или волноводные линии, частично заполненные поглощающими материалами, в которых энергия излучения преобразуется в тепловую.
Эффективным средством защиты от воздействия электромагнитных излучений является экранированиеисточников излучения и рабочего места с помощью экранов, поглощающих или отражающих электромагнитную энергию. Выбор конструкции экранов зависит от характера технологического процесса, мощности источника, диапазона волн. Отражающие экраны используют в основном для защиты от паразитных излучений (утечки из цепей в линиях передачи СВЧ-волн, из катодных выводов магнетронов и других), а также в тех случаях, когда электромагнитная энергия не является помехой для работы генераторной установки или радиолокационной станции. В остальных случаях, как правило, применяются поглощающие экраны. Для изготовления отражающих экранов используются материалы с высокой электропроводностью (металлы или хлопчатобумажные ткани с металлической основой). Сплошные металлические экраны наиболее эффективны и уже при толщине 0,01 мм обеспечивают ослабление электромагнитного поля примерно на 50 дБ (в 100 000 раз). Для изготовления поглощающих экранов применяются материалы с плохой электропроводностью, например экраны в виде прессованных листов резины специального состава со сплошными или полыми шипами.
Важное профилактическое мероприятие по защите от электромагнитного облучения – рациональное размещение оборудования и создание специальных помещений, в которых должны находиться источники электромагнитного излучения. Экраны источников излучения на рабочих местах блокируются с отключающими устройствами, что позволяет исключить работу излучающего оборудования при открытом экране.
2.5.10. Факторы риска при работе с компьютерами, нормы и рекомендации для защиты от ЭМП при эксплуатации компьютеров
С точки зрения безопасности труда на здоровье пользователей прежде всего влияют повышенное зрительное напряжение, психологическая перегрузка, длительное неизменное положение тела в процессе работы и воздействие электромагнитных полей, которое является наиболее опасным и коварным, так как действует незаметно и проявляется не сразу.
Особенно опасно электромагнитное излучение компьютера для детей и беременных женщин.
Согласно СанПиН 2.2.2/2.4.1340-03 в диапазоне частот 5 Гц…2 кГц напряженность электрического поля Е не должна превышать 25 В/м, а магнитная индукция В – 250 нТл, что равнозначно напряженности магнитного поля Н = 0,2 А/м. Напряженность магнитного поля и магнитная индукция связаны между собой следующим соотношением:
,
где Н – напряженность магнитного поля, А/м;
В – магнитная индукция, Тл;
μ0 = 4 π·10-7 Гн/м – магнитная постоянная;
при этом 1 А/м ~ 1,25 мкТл, 1 мкТл ~ 0,8 А/м.
В диапазоне частот 2…400 кГц – Е<2,5 В/м, а Н< 0,02 А/м. Эти значения должны характеризовать ЭМП на расстоянии 50 см от видеодисплейных терминалов вокруг них, так как ЭМИ от компьютера распространяются в пространстве во всех направлениях, а не только от экрана. В связи с этим согласно СанПиН расстояние между тыльной поверхностью одного видеомонитора и экраном другого должно быть не менее 2 м, а между боковыми поверхностями — не менее 1,2 м. При индивидуальном использовании ПЭВМ или однорядном их расположении необходимо установить защитное покрытие на заднюю и боковые стенки ПЭВМ.
регламентируется также поверхностный электростатический потенциал, который не должен превышать 500 В. При эксплуатации компьютеров ранних поколений в обязательном порядке надо применять защитный экран на мониторе, причем экран необходимо заземлять. Следует выбирать наиболее прозрачный экран, так как при работе с темным экраном (менее 50 % прозрачности) приходится увеличивать яркость, что сокращает срок службы монитора и увеличивает интенсивность излучения, особенно в области наиболее вредных низких частот.
Более поздние мониторы с маркировкой Low Radiation практически удовлетворяют требованиям СанПиН по уровню ЭМИ. Компьютеры с жидкокристаллическим экраном не наводят статического электричества и не имеют источников относительно мощного электромагнитного излучения. При использовании блока питания возникает некоторое превышение уровня на промышленной частоте, поэтому рекомендуется работа от аккумулятора.
Во всех случаях для снижения уровня облучения монитор рекомендуется располагать на расстоянии вытянутой руки пользователя. Оптимальным считается стояние до экрана 60…70 см.
Появился новый показатель напряженности труда – наблюдение за экранами видеотерминалов. Оптимальным устанавливается наблюдение до 2 ч в смену, допустимым – до 3 ч. Свыше 3 ч – это напряженность (вредность) первой, а свыше 4 ч – напряженность второй степени. Зрительная нагрузка больше этого времени просто не допускается.
Для обеспечения метеоусловий площадь на одно рабочее место с ПЭВМ должна быть не менее 6,0 м2. Освещенность на поверхности стола должна быть 300…500 лк, а уровень шума на рабочих местах не должен превышать 50 дБА.
Даже если все параметры компьютера, среды и рабочего места соответствуют нормативным требованиям и рекомендациям, частая и продолжительная работа за ПЭВМ может привести к негативным последствиям для здоровья. Поэтому следует уделять внимание режиму труда и отдыха, который зависит от вида и категории трудовой деятельности. Длительность работы преподавателей вузов в дисплейных классах не должна превышать 4 ч в день, а максимальное время занятий для первокурсников – 2 ч в день, студентов же старших курсов – 3 академических часа при соблюдении регламентирован-ных перерывов и профилактических мероприятий.
Лазерное излучение
Лазерное излучение (ЭМИ с частотами от 30·1011 до 1,5·1015 Гц) генерируют оптические квантовые генераторы (ОКГ) – лазеры. Лазерное излучение (ЛИ) – это узкий нефокусированный или фокусированный световой поток, сосредоточенный в основном в видимой области длин волн, а также в инфракрасной и ультрафиолетовой. Специфическими свойствами ЛИ являются острая направленность, монохроматичность (одноцветность), большая мощность. Нефокусированный луч имеет ширину 1-2 см, фокусированный – 1…0,01 мм и менее.
В основу классификации лазеров положена степень опасности лазерного излучения для обслуживающего персонала. По этой классификации лазеры разделены на четыре класса:
1-й класс (безопасные) – выходное излучение не опасно для глаз;
2-й класс (малоопасные) – опасно для глаз прямое или зеркально отраженное излучение;
3-й класс (среднеопасные) – опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение;
4-й класс (высокоопасные) – опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.
Биологическое действие ЛИ возникает вследствие поглощения организмом тепловой энергии лазера, что приводит к ожогам кожи. Особенно сильно влияет ЛИ на глаза. При работе с лазерами большой мощности возможно повреждение внутренних органов и мозга. ЛИ может вызвать изменения в деятельности сердечно-сосудистой системы. При работе с ОКГ опасно не только прямое, но и отраженное ЛИ. В механизме биологического воздействия лазерного луча, кроме теплового эффекта, имеет значение и ряд других факторов. При обслуживании ОКГ, кроме излучений, на работающих может влиять постоянный или импульсный шум интенсивностью до 120 дБ, пониженное содержание кислорода в воздухе или повышенное содержаниеазота, а также токсические вещества (нитробензол, сероуглерод).
В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиция облучения.
Основными нормативными правовыми актами, используемыми для оценки условий труда при работе с оптическими квантовыми генераторами, являются Санитарные нормы и правила устройства и эксплуатации лазеров СанПиН №5804-91; методические рекомендации «Гигиена труда при работе с лазерами», утвержденные Министерством здравоохранения РСФСР 27.04.81 г.; ГОСТ 24.713-81 «Методы измерений параметров лазерного излучения. Классификация»; ГОСТ 24.714-81 «Лазеры. Методы измерения параметров излучения. Общие положения»; ГОСТ 12.1.040-83 «Лазерная безопасность. Общие положения»; ГОСТ 12.1.031-81 «Лазеры. Методы дозиметрического контроля лазерного излучения».
Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.
Защитные мероприятия включают в себя экранирование ОКГ; применение телевизионных систем наблюдения за ходом процесса; использование дистанционного управления процессом; сведение к минимуму отражающих поверхностей оборудования и стенок. Работа выполняется при общем ярком освещении. Размещают лазер только в специальном помещении, дверь которого должна иметь блокировку. На входную дверь наносят знак лазерной безопасности. Для удаления возможных токсических газов, паров и пыли оборудуется приточно-вытяжная вентиляция с механическим побуждением. Для защиты от шума принимаются соответствующие меры звукоизоляции установок, звукопоглощения и др.
При эксплуатации лазеров должен производиться периодический дозиметрический контроль (не реже одного раза в год). В качестве СИЗ применяют специальные противолазерные очки, фильтры, защищающие глаза оператора, щитки, маски, технологические халаты и перчатки.