Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Производная по направлению



Декомпозиция

Основной операцией анализа является разделение целого на части. Задача распадается на подзадачи, система – на подсистемы, цели – на подцели и т. д. При необходимости этот процесс повторяется, что приводит к иерархическим древовидным структурам. Обычно (если задача не носит чисто учебного характера) объект анализа сложен, слабо структурирован, плохо формализован, поэтому операцию декомпозиции выполняет эксперт. Если поручить анализ одного и того же объекта разным экспертам, то полученные древовидные списки будут различаться. Качество построенных экспертами деревьев зависит как от их компетенции в данной области знаний, так и от применяемой методики декомпозиции. Декомпозиция подпроблем проводится до уровня элементарных, т. е. таких, дальнейшая конкретизация которых приводит к выявлению определенных вариантов их решения.

Обычно эксперт легко разделяет целое на части, но испытывает затруднения, если требуется доказательство полноты и безызбыточности предлагаемого набора частей. Объяснение состоит в том, что основанием всякой декомпозиции является модель рассматриваемой системы.

Операция декомпозиции представляется как сопоставление объекта анализа с некоторой моделью, как выделение в нем того, что соответствует элементам взятой модели. Поэтому на вопрос, сколько частей должно получиться в результате декомпозиции, можно дать следующий ответ: столько, сколько элементов содержит модель, взятая в качестве основания. Вопрос о полноте декомпозиции – это вопрос завершенности модели.

Итак, объект декомпозиции должен сопоставляться с каждым элементом модели-основания. Однако и сама модель-основание может с разной степенью детализации отображать исследуемый объект. Например, в системном анализе часто приходится использовать модель типа “жизненный цикл”, позволяющую декомпозировать анализируемый период времени на последовательные этапы от его возникновения до окончания. В жизни человека принято различать молодость, зрелость и старость, но можно выделять и более мелкие этапы, например детство, отрочество и юность. Такое же разнообразие может иметь место и при декомпозиции жизненного цикла любой проблемы. Разбиение на этапы дает представление о последовательности действий, начиная с обнаружения проблемы и кончая ее ликвидацией (иногда такую последовательность рассматривают как “алгоритм системного анализа”).

Установив, что декомпозиция осуществляется с помощью некоторой модели, сквозь которую мы как бы рассматриваем расчленяемое целое, далее следует ответить на естественно возникающие вопросы:

модели какой системы следует брать в качестве оснований декомпозиции;

какие именно модели надо брать.

Выше упоминалось, что основанием декомпозиции служит модель “рассматриваемой системы”, но какую именно систему следует под этим понимать? Всякий анализ проводится для чего-то, и именно эта цель анализа и определяет, какую систему следует рассматривать. Система, с которой связан объект анализа, и система, по моделям которой проводится декомпозиция, не обязательно совпадают, и хотя они имеют определенное отношение друг к другу, это отношение может быть любым: одна из них может быть подсистемой или надсистемой для другой, они могут быть и разными, но как-то связанными системами.

Например, анализируется цель “выяснить этиологию и патогенез ишемической болезни сердца”, в качестве исследуемой системы можно взять сердечно-сосудистую систему, а можно выбрать конкретный кардиологический институт. В первом случае декомпозиция будет порождать перечень подчиненных целей научного, во втором – организационного характера.

Иногда в качестве оснований декомпозиции полезно не только перебирать разные модели целевой системы, но и брать сначала модели надсистемы, затем самой системы и, наконец, подсистем. Например, при системном анализе функций Минвуза РСФСР декомпозиция глобальной цели высшего образования страны сначала проводилась по моделям вузовской системы в целом, а в конце – по моделям функционирования министерского аппарата. Можно также рассматривать и такую процедуру анализа, когда перед каждым очередным актом декомпозиции заново ставиться вопрос не только о том, по какой модели проводить декомпозицию, но и о том, не следует ли взять модель иной системы, нежели ранее.

Однако чаще всего в практике системного анализа в качестве глобального объекта декомпозиции берется нечто, относящееся к проблемосодержащей системе и к исследуемой проблеме, а в качестве оснований декомпозиции берутся модели проблеморазрещающей системы.

При всем практически необозримом многообразии моделей формальных типов моделей немного: это модели “черного ящика”, состава, структуры, конструкции (структурной схемы) – каждая в статическом или динамическом варианте. Это позволяет организовать нужный перебор типов моделей, полный или сокращенный, в зависимости от необходимости.

Однако основанием для декомпозиции может служить только конкретная, содержательная модель рассматриваемой системы. Выбор формальной модели лишь подсказывает, какого типа должна быть модель-основание; формальную модель следует наполнить содержанием, чтобы она стала основанием для декомпозиции. Это позволяет несколько прояснить вопрос о полноте анализа, который всегда возникает в явной или неявной форме.

Полнота декомпозиции обеспечивается полнотой модели-основания, а это означает, что прежде всего следует позаботиться о полноте формальной модели. Благодаря формальности, абстрактности такой модели часто удается добиться ее абсолютной полноты.

Основание для декомпозиции является содержательная модель системы. Это означает, что в разделяемом целом мы должны найти часть, соответствующую каждому из элементов модели-основания. Ориентиром для построения содержательной модели (т.е. основания декомпозиции) служат формальные модели известных типов. Предметом особого внимания является полнота модели.

Один из способов упрощения сложного — метод декомпозиции — состоит в разложении сложного целого на все более мелкие и простые части. Компромиссы между требованием не упустить важного (принцип полноты) и требованием не включать в модель лишнего (принцип простоты) достигаются с помощью понятий существенного (необходимого), элементарного (достаточного), а также постепенной нарастающей детализации базовых моделей и итеративности алгоритма декомпозиции.

Рис.15.4 — Укрупненная схема алгоритма декомпозиции

19. Нелинейное программирование

Нелинейное программирование является частью математического программирования, в котором нелинейная функция представлена определенными ограничениями или целевой функцией. Основной задачей нелинейного программирования является нахождение оптимального значения заданной целевой функции с определенным количеством параметров и ограничений.

Задачи нелинейного программирования отличаются от задач линейного содержанием оптимального результата не только в пределах области, имеющей определенные ограничения, но и за ее пределами. К таким типам задач относятся те задания математического программирования, которые могут быть представлены как равенствами, так и неравенствами.

Классифицируется нелинейное программирование в зависимости от разновидности функции F(x), функции ограничений и размерности вектора решений x. Так, название задачи зависит от количества переменных. При использовании одной переменной нелинейное программирование может быть выполнено с помощью безусловной однопараметрической оптимизации. При числе переменных свыше одной можно использовать безусловную многопараметрическую оптимизацию.

Для решения задач линейности используют стандартные методы линейного программирования (например, симплекс-метод). А вот при нелинейном общего способа решения не существует, выбирается в каждом отдельном случае свое и оно также зависит от функции F(x).

Нелинейное программирование встречается в обыденной жизни довольно часто. Например, это непропорциональный рост затрат количеству произведенных или закупленных товаров.

Иногда для нахождения оптимального решения в задачах нелинейного программирования стараются выполнить приближение к линейным задачам. Примером могут служить квадратичное программирование, в котором функция F(x) представлена полиномом второй степени по отношению к переменным, при этом соблюдается линейность ограничений. Вторым примером служит использование метода штрафных функций, применение которых при наличии определенных ограничений сводит задание поиска экстремума к аналогичной процедуре без таковых ограничений, решаемой значительно проще.

Однако если анализировать в целом, то нелинейное программирование представляет собой решение задач повышенной вычислительной трудности. Очень часто во время их решения приходится использовать приближенные методы оптимизации. Еще одно мощное средство, которое может быть предложено для решения такого типа задач – численные методы, позволяющие найти верное решение с заданной точностью.

Как уже было сказано выше, нелинейное программирование требует индивидуального особого подхода, который должен учитывать его специфику.

Существуют следующие методы нелинейного программирования:

- градиентные методы, основанные на свойстве функционального градиента в точке. Другими словами, это вектор частных производных, вычисленный в точке, принятой в качестве указателя направления наибольшего увеличения функции в окрестностях этой точки.

- метод Монте-Карло, при котором определяется параллелепипед n-ой размерности, включающий в себя множество планов, для последующего моделирования случайных N-точек с равномерным распределением в данном параллелепипеде.

- метод динамического программирования сводится к многомерной задаче оптимизации заданий к меньшей размерности.

- метод выпуклого программирования реализуется в поиске минимального значения выпуклой функции или максимального значения вогнутой на выпуклой части множества планов. В случае, когда множество планов представляет собой выпуклый многогранник, тогда может быть применен симплексный метод.

В задаче нелинейного программирования (НЛП) требуется найти значение многомерной переменной х=(), минимизирующее целевую функцию f(x) при условиях, когда на переменную х наложены ограничения типа неравенств

, i=1,2,…,m (1)

а переменные , т.е. компоненты вектора х, неотрицательны:

(2)

Иногда в формулировке задачи ограничения (1) имеют противоположные знаки неравенств. Учитывая, однако, что если , то , всегда можно свести задачу к неравенствам одного знака. Если некоторые ограничения входят в задачу со знаком равенства, например , то их можно представить в виде пары неравенств , , сохранив тем самым типовую формулировку задачи.

21. Вариационное исчисление

Вариацио́нное исчисле́ние — это раздел функционального анализа, в котором изучаютсявариации функционалов. Самая типичная задача вариационного исчисления состоит в том, чтобы найти функцию, на которой функционал достигает экстремального значения. Методы вариационного исчисления широко применяются в различных областях математики, вдифференциальной геометрии с их помощью ищут геодезические и минимальные поверхности. В физике вариационный метод — одно из мощнейших орудий получения уравнений движения (см. например Принцип наименьшего действия), как для дискретных, так и для распределённых систем, в том числе и для физических полей. Методы вариационного исчисления применимы и в статике (см. Вариационные принципы).
Важнейшими понятиями вариационного исчисления являются следующие:
1. вариация (первая вариация),
2. вариационная производная (первая вариационная производная),
3. кроме первой вариации и первой вариационной производной, рассматриваются и вариации и вариационные производные второго и высших порядков.

Вариация

Аналогом дифференциала (первого дифференциала) является в вариационном исчислении вариация (первая вариация):

(как и в случае дифференциала имеется в виду линейная часть этого приращения, а выражаясь традиционным образом — выбирается бесконечно малой, и при вычислении разности отбрасываются бесконечно малые высших порядков). При этом — играющее роль дифференциала или малого приращения независимой переменной — называется вариацией .

Как видим, сама в свою очередь является функционалом, так как она, вообще говоря, различна для разных (также и для разных ).

Таким образом, это — в применении к функционалам — прямой аналог дифференциала функции конечномерного (в том числе одномерного) аргумента:

— точно так же понимаемого как линейная часть приращения функции при бесконечно малом приращении аргумента (или линейный член при разложении по степеням вблизи точки ).

Производная по направлению

(Производная Гато) Производной функционала в точке по направлению , очевидно, будет

Этого в принципе уже достаточно для решения типичной вариационной задачи — нахождения «стационарных точек», то есть таких функций , для которых первая вариация или производная по направлению обращается в ноль для любой бесконечно малой или любой конечной . Именно эти «точки» в пространстве функций — то есть именно такие функции — являются кандидатами в экстремали (проверку того, действительно ли они являются экстремалями, то есть достигается ли на них локальный экстремум, надо делать отдельно, как и в случае функций конечномерного аргумента; интересно, что во многих задачах физики важнее найти не экстремали, а именно стационарные точки).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.