Первая научная картина мира была построена И. Ньютоном, несмотря на внутреннюю парадоксальность, она оказалась удивительно плодотворной, на долгие годы, предопределив самодвижение научного познания мира. В этой удивительной Вселенной не было места случайностям, все события были строго предопределены жестким законом причинности. А у времени было еще одно странное свойство: из уравнений классической механики следовало, что во Вселенной не изменится ничего, если оно вдруг начнет течь в противоположном направлении.
Все было бы хорошо, если бы не одна особенность реального мира – его склонность к хаотическим состояниям. С точки зрения классики – это нонсенс, то, чего быть не может. Открытия термодинамики заставили посмотреть на проблему по-иному: был сделан вывод, что хаос, состояние «тепловой смерти» – это неизбежное конечное состояние мира.
Стало ясно, что, не найдя научного подхода к изучению явлений хаоса, мы заведем научное познание мира в тупик. Существовал простой способ преодоления этих трудностей: следовало превратить проблему в принцип. Хаос – это свободная игра факторов, каждый из которых, взятый сам по себе, может показаться второстепенным, незначительным. В уравнениях математической физики такие факторы учитываются в форме нелинейных членов, т.е. таких, которые имеют степень, отличную от первой. А потому теорией хаоса должна была стать нелинейная наука.
Классическая картина мира основана на принципе детерминизма, на отрицании роли случайностей. Законы природы, сформулированные в рамках классики, выражают определенность. Реальная Вселенная мало похожа на этот образ. Для нее характерны: стохастичность, нелинейность, неопределенность, необратимость. Понятие «стрелы времени» утрачивает для нее прежний, ясный смысл.
В нелинейной Вселенной законы природы выражают не определенность, а возможность и вероятность. Случайности в этой Вселенной играют фундаментальную роль, а ее наиболее характерным свойством являются процессы самоорганизации, в которых и сам хаос играет конструктивную роль. Формирование научного аппарата нелинейной картины мира происходило по нескольким направлениям. В математике это теория особенностей (А. Пуанкаре, А.А. Андронов, X. Уитни) и теория катастроф (Р. Том, К. Зиман, В.И. Арнольд). Ключевые термины, введенные в этих теориях, это бифуркация –процесс качественной перестройки и ветвления эволюционных паттернов системы, катастрофы – скачкообразные изменения свойств системы, возникающие на фоне плавного изменения параметров, аттрактор – «притягивающее» состояние, в котором за счет отрицательных обратных связей автоматически подавляются малые возмущения.
Рассмотрим базовые принципы нелинейного образа мира. Во-первых, это принцип открытости. Система является открытой, если она обладает источниками и стоками по веществу, энергии и/или информации. Во-вторых, это принципы нелинейности. В-третьих, это когерентность, т.е. самосогласованность сложных процессов используется, например, в лазерах.
Опираясь на эти принципы, перечислим основные отличительные свойства мира, подчиняющегося нелинейным закономерностям.
1. Необратимость эволюционных процессов. Барьер, который препятствует стреле времени обратить свой вектор в противоположную сторону, образует нелинейные процессы.
2. Бифуркационный характер эволюции. Принципиальная отличительная особенность развития нелинейных систем – чередование периодов относительно монотонного самодвижения в режиме аттракции и зон бифуркации, где система утрачивает устойчивость по отношению к малым возмущениям. В результате за зоной бифуркации открывается целый диапазон альтернативных эволюционных сценариев. Это означает переход от жесткого лапласовского принципа детерминизма к бифуркационному вероятностному принципу причинно-следственных связей.
3. Динамизм структуры саморазвивающихся систем. Существуют два типа кризисов эволюционирующей системы – структурный и системный. В случае первого после зоны бифуркации такая система может сохранить устойчивость за счет перестройки своей структуры, во втором – переходит на качественно новый уровень.
4. Новое понимание будущего. К зоне бифуркации примыкает спектр альтернативных виртуальных сценариев эволюции. И, следовательно, паттерны грядущего существуют уже сегодня, будущее оказывает влияние на текущий процесс – этот вывод полностью противоречит классике.
Нелинейная наука ведет к эволюционной синергетической парадигме. Принятие этой парадигмы означает, во-первых, отказ от базовых постулатов традиционной науки: принципов существования абсолютно достоверной истины и абсолютно достоверного знания; принципа классической причинности; редукционизма; концепции линейности; гипотезы апостериорности, т.е. приобретения знаний исключительно на основе прошлого опыта.
Во-вторых, это принятие синергетических принципов конструирования картины мира.
1. Принцип становления: главная форма бытия – не покой, а движение, становление. Эволюционный процесс имеет два полюса: хаос и порядок, деконструкция.
2. Принцип сложности: возможность обобщения, усложнения структуры системы в процессе эволюции.
3.Принцип виртуальности будущего: наличие диапазона альтернативных паттернов в постбифуркационном пространстве-времени.
4. Принцип подчинения: минимальное количество ключевых параметров, регулирующих процесс происхождения бифуркации.
5. Фундаментальная роль случайностей в зоне бифуркации.
6. Принцип фрактальности: главное в становлении не элементы, а целостная структура.
7. Принцип темпоральности: суперпозиция различных темпоритмов элементов системы.
8. Принцип дополнительности: возможность моделирования эволюции системы с помощью нескольких параллельных теоретических подходов.
В свое время классическая картина мира показалась удобной для развития гуманитарных научных дисциплин. Адам Смит и Давид Риккардо, создавая политическую экономию, ввели понятие «невидимой руки рынка», принцип которой им подсказали идеи Ньютона о гравитации. Томас Гоббс, разрабатывая теорию государства, вдохновлялся теорией атомного строения материи.
Методы нелинейной науки, зародившиеся в сфере естественнонаучного знания, оказались перспективными при исследовании проблем социально-культурной динамики.
Самоорганизующихся биологические и социальные систем моделируются методами синергетики их структурных и эволюционных характеристик и получены неплохие результаты, интересные в научном и практическом отношениях.
Современный глобальный кризис в значительной мере обусловлен отставанием научной методологии прогнозирования от практических потребностей. Во многом это объясняется тем, что до сих пор не преодолено наследие классической методологии, а принципы нелинейности мышления еще не получили адекватного применения в области научного знания.