Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Динамические и статистические закономерности в природе



 

Рассмотрим два типа физических явлений: механическое движе­ние тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Законы классической механики называются динамическими законами, тем самым подчеркивается, что движение происходит под действием тех или иных сил. Динамические законы имеют строго однозначный характер всех связей и зависимостей.

Зная начальное состояние механической системы, можно однозначно определить ее последующие состояния. Динамические закономерности не допускают какой-либо неопределенности системы. Они действуют во всех автономных, мало зависимых от внешней среды системах с относительно малым количеством входящих в нее элементов (например, характер движения планет Солнечной системы).

Во второй половине XIX в. наряду с динамическими в ряде разделов физики получили широкое развитие статистические методы исследования.

Классическим примером является статистическое рассмотрение тепловых термодинамических процессов. В данном случае рассматриваемая система, в отличие от динамической, включает огромное число отдельных элементов (например, полное число молекулгазовой системы). И здесь рассматривается не движение каждой отдельно взятой молекулы, а лишь вероятностные ее характеристики. Затем, используя теорию вероятностей, теорию случайных событий, можно определить усредненные характеристики всей системы и установить статистические закономерности поведения всей системы.

Примером тому может служить установление статистической закономерности между температурой газа и кинетической энергией совокупности молекул системы в молекулярно-кинетической теории газа.

Статистические закономерности действуют во всех неавтономных, сильно зависящих от внешней среды системах, с большим количеством элементов.

При статистических закономерностях данное состояние системы определяет все ее последующие состояния не однозначно, а лишь с определенной вероятностью.

В классической термодинамике в основном рассматриваются изолированные системы, которые не обмениваются с внешней средой энергией. Именно для таких систем установлен закон возрастания энтропии. Этот закон имеет простое статистическое толкование. Действительно, энтропия изолированной, т.е. предоставленной самой себе, системы не может убывать. С другой стороны, очевидно, что предоставленная самой себе система будет переходить из менее вероятного состояние в более вероятное. Таким образом, энтропия и вероятность состояний изолированной системы ведут себя аналогично: они могут либо возрастать, либо оставаться неизменными.

В последние годы широкое развитие получили исследования в области термодинамики неизолированных, так называемых открытых систем, т.е. систем, которые обмениваются энергией и веществом с внешним миром. Открытыми являются биологические системы, в частности клетка живых организмов. Для таких систем энтропия может как возрастать, так и убывать.

В изолированных системах естественные процессы идут в направлении от упорядоченных структур к неупорядоченным, т.е. от порядка к беспорядку, хаосу. И в этом смысле можно говорить о том, что энтропия есть мера хаоса.

Для неизолированных, открытых, систем эволюция, например, живых организмов ведет от менее совершенных форм к более совершенным, от меньшего порядка в природе к большему, и в этих системах энтропия может не увеличиваться, а уменьшаться.

 

Законы сохранения энергии в макроскопических процессах

Формы энергии

 

Энергия (от греч.– действие, деятельность) – общая ко­личественная мера движения и взаимодействия всех видов материи, Понятие «энергия» связывает воедино все явления природы.

В соответствии с различными формами движения материи рас­сматривают и разные формы энергии: тепловую, механическую, внут­реннюю, химическую, электромагнитную, ядерную и др. Это деление в известной степени условно.

Механическая энергия подразделяется в свою очередь на кинетическую и потенциальную.

Внутренняя энергия равна сумме кинетических энергий хаотического движения молекул относительно центра масс и потенциальных энергий взаимодействия молекул друг с другом.

Химическая энергия складывается из кинетической энергии движения электронов и электрической энергии взаимодействия электронов друг с другом и с атомными ядрами молекул химически веществ. Энергия химических связей для двухатомных молекул – это энергия, требуемая для удаления атомов на бесконечно большое расстояние друг от друга. Для многоатомных молекул, радикалов ионов рассматривается также энергия диссоциации. Суммарная энергия удаления всех атомов многоатомных молекул друг от друга на бесконечное расстояние называется энергией образования молекулы и приблизительно равна сумме энергий химических связей.

В атомной физике используется понятие энергии ионизации. Она равна работе, затрачиваемой на удаление одного внешнего электрона из атома, или ионизационному потенциалу.

В микрофизике широко используется понятие энергии связи. Энергия связи системы каких-либо частиц (например, атома как системы, состоящей из ядра и электронов) равна работе, которую необходимо затратить, чтобы разделить данную систему на составляющие ее частицы и удалить их друг от друга на такое расстояние, при котором их взаимодействием можно пренебречь. Энергия связи определяется взаимодействием частиц и является отрицательной величиной, так как при образовании связанной системы энергия выделяется. Абсолютная величина энергии связи характеризует прочность связи и устойчивость системы.

Энергия связи электронов в атоме или молекуле определяется электромагнитными взаимодействиями и для каждого электрона пропорциональна ионизационному потенциалу.

Энергия связи в атомных ядрах определяется сильным взаимодействием нуклонов и, согласно соотношению Эйнштейна ΔЕ = Δтс2, пропорциональна дефекту масс атомных ядер Δm.

Энергия связи, обусловленная гравитационным взаимодействием, обычно мала и имеет значение лишь для космических объектов.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.