Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Понятие «пространство»



В обыденном восприятии под пространством понимают некую протяженную пустоту, в которой могут находиться какие-либо предметы. Однако между небесными телами есть некоторое количество вещества, да и физический вакуум содержит виртуальные частицы. В науке пространство рассматривается как физическая сущность, обладающая конкретными свойствами и структурой.

Пространство и время — всеобщие и необходимые объективные формы бытия материи. «В мире, — писал В. И.Ленин, — нет ничего кроме движущейся материи, а движущаяся материя не может двигаться иначе чем в пространстве и времени». Материя объективно существует в форме вещества и поля, образует Вселенную, существующую независимо от того, ощущаем мы ее или нет.

Основные свойства пространства формировались по мере освоения человеком территорий и развития геометрии (от греч. geometria — землемерие). Сложившиеся к IIIв. до н. э. знания систематизировал древнегреческий математик Евклид. В своем знаменитом произведении «Начала», состоящем из 15 книг, ставшем основой геометрии, он организовал научное мышление на основе логики. В первой книге Евклид определил идеальные объекты геометрии: точка, прямая линия, плоскость, поверхность.

Эти объекты рассматривались через некоторые характеристики реального окружающего мира или каких-либо предметов, часто для этого использовались представления о луче света или натянутой струне. Например, образ прямой линии связан с лучом света. Но было известно, что в неоднородных средах световой луч преломляется; и сам же Евклид получил закон равенства углов отражения и падения, а Аристотель рассуждал о кажущемся преломлении палки, погруженной частично в воду. Исходя из наиболее простых свойств линий и углов Евклид путем строгих логических доказательств пришел в планиметрии к формулировке условий равенства треугольников, равенства площадей, теореме Пифагора, к золотому сечению, кругу и правильным многоугольникам. В книгах V—VI и X он излагает теорию несоизмеримых Евдокса и правила подобия, VII—IX — теорию чисел, а в последних трех — геометрию в пространстве. От телесных углов, объемов параллелепипедов, призм, пирамид и шара Евклид переходит к исследованию пяти правильных («Платоновых») тел и доказательству, что их существует только пять.


Изложение Евклида построено в виде строго логических выводов теорем из системы аксиом и постулатов (кроме системы определений). Согласно им и определены основные представления о пространстве, которые использованы И. Ньютоном в его «Математических началах натуральной философии» (1687):

однородность — нет выделенных точек пространства, параллельный перенос не изменяет вид законов природы;

изотропность — в пространстве нет выделенных направлений, и поворот на любой угол сохраняет неизменными законы природы;

непрерывность — между двумя различными точками в пространстве, как близко бы они не находились, всегда есть третья;

трехмерность — каждая точка пространства однозначно определяется набором трех действительных чисел — координат;

«евклидовость» — описывается геометрией Евклида, в которой, согласно пятому постулату, параллельные прямые не пересекаются или сумма внутренних углов треугольника равна 180°.

Пятый постулат геометрии Евклида привлекал к себе особое внимание, и некие его эквиваленты привели в XIX в. к возможности иных геометрий, в которых сумма углов треугольника больше (геометрия Римана — геометрия на сфере) или меньше 180° (геометрии Лобачевского и Больяйи).

Положение тел в окружающем пространстве определяется тремя координатами (долгота, широта, высота), т.е. наглядным представлениям соответствует трехмерность пространства. Птолемей в своем труде «Альмагест» утверждал, что в природе не может быть более трех пространственных измерений. Для определения положения в пространстве Р.Декарт обосновал единство физики и геометрии. Развив идею близкодействия, он объяснял все явления природы механическим взаимодействием частиц, он запомнил мир тонкой материей — эфиром. Он ввел прямоугольную систему координат («декартовы координаты») — х, у, z. Для описания орбит планет при их движении вокруг Солнца удобнее сферическая система координат, вьщеляющая положение Солнца и учитывающая, что гравитационное поле убывает одинаково по всем направлениям. Выбор системы координат — это просто выбор способа описания, и он не может влиять на свойства континуума, который нужно описать. Пространства и континуумы независимо от способа описания обладают своими внутренними геометрическими свойствами (например, кривизной). Пространство называют искривленным, если в него невозможно ввести координатную систему, которая может считаться прямолинейной. Иначе — оно плоское.

Физический мир Декарта состоит из двух сущностей: материи (простой «протяженности, наделенной формой») и движения. Поскольку


«природа не терпит пустоты» (Аристотель), протяженность заполнена «тонкой материей» — эфиром, которую Бог наделил непрерывным движением. Декарт описал все процессы своими механическими законами движения и построил «космологический роман» (трактаты «Мир» и «Начала философии»). Декартово представление о флюидах, заполняющих пространство, господствовало в науке XIX и частично XX вв., оказав существенное влияние на развитие оптики и электричества. Вес, как и любая сила, у Декарта — свойство движения тонкой материи, отождествляемой с пространством. Поэтому механицизм Декарта сводит силы к свойствам пространства.

Живя на поверхности почти сферической, мы пользуемся геометрией на плоскости, хотя правильнее говорить, что большие круги (параллели и меридианы) — кратчайшие расстояния (что учитывается при прокладке курса самолетов, например). На геометрии Евклида построена механика Галилея—Ньютона, где тела движутся криволинейно только под действием сил. Ньютон пришел к идее абсолютных пространства (бесконечной однородной протяженности) и времени (бесконечной однородной длительности). Каждый объект обладает в пространстве определенным положением и ориентацией, а расстояние между двумя событиями точно определено, даже если они произошли в разные моменты времени.

Положение R тела в пространстве определяется только относительно системы каких-то объектов: у Ньютона — относительно инерциальных систем отсчета. Так как ощущается лишь неравномерное движение (а не движение с постоянной скоростью), имеет смысл говорить об изменении скорости v = dR/dt тела в пространстве, и движения определяются только ускорением aW = dv/dt. Ньютон перевел эти, сугубо обыденные, ощущения на математический язык, у него все равномерные движения относительны, а ускоренные — абсолютны. Причины, вызывающие ускоренные движения, он назвал силами. Силы F пропорциональны ускорению тел с коэффициентом М, называемым инертной массой: F = МaW. Если этот закон Ньютона прочесть справа налево, видно, что части системы при равномерном движении не испытывают силового воздействия. Значит, механическими средствами равномерное движение нельзя отличить от другого такого же и пространство само по себе не оказывает силового воздействия на движущиеся тела.

Механика Ньютона позволяет наблюдать только ускоренные движения, а ускорение ведет к возникновению в системе отсчета движущегося тела сил инерции. Таковы, например, давление ног человека, направленное вниз при кратковременной остановке лифта, движущегося в направлении вверх, или центробежная сила на вращающейся карусели. Приписывая появление сил инерции пространству, в котором происходит ускорение, Ньютон доказывал реальность его существования. Оно — субстанция, способная динамически действовать на материальные тела.


Создание теории электромагнитного поля дало возможность использовать оптические явления для измерения скорости движения в пространстве: свет должен распространяться в эфире (некоей жидкости, заполняющей пространство) с постоянной скоростью, зависящей от «упругости» эфира, а скорость света, измеренная наблюдателем, должна зависеть от направления распространения света. Но проведенный А. Майкельсоном и Э. Морли опыт показал, что никакого эффекта, связанного с эфиром, нет (1887). Пришлось отказаться от эфира и наглядных представлений Ньютона о пространстве и времени, и А. Эйнштейн предложил (1905) свою специальную теорию относительности (СТО).

В основе СТО лежат два постулата: скорость света в вакууме постоянна и не зависит от движения наблюдателя или источника света; все физические явления (механические и электродинамические) происходят одинаково во всех телах, движущихся относительно друг друга прямолинейно и равномерно. Это означало сокращение длин и замедление течения времени в соответствии с преобразованиями Лоренца для тел, движущихся со скоростями, близкими к скорости света. «Отныне пространство и время, взятые по отдельности, обречены влачить призрачное существование, и только единство их обоих сохранит реальность и самостоятельность» (Г. Минковский). Изменения длин и времен ощутимы лишь при скоростях, близких к скорости света; при меньших скоростях движение происходит по законам классической механики. В таком пространстве-времени уже удобнее криволинейные координаты. В разных системах координат по-разному будут выглядеть математические записи законов физических явлений. Итак, в СТО время и пространство объединяются в четырехмерное пространство-время.

В конце XIX в. появились неевклидовы теории пространства— различные варианты геометрии Н. И. Лобачевского, Я.Больяйи и Г. Ф. Б. Римана. Они отвергали один из постулатов Евклида — в них через точку можно провести несколько прямых, параллельных заданной, или ни одной, соответственно. Проверкой было бы измерение суммы внутренних углов треугольника, но измерения Гаусса и Лобачевского не обнаружили отклонений физического пространства от евклидового. Пространство Римана, в котором сумма углов больше 180°, соответствует геометрии на сфере и легло в основу общей теории относительности (ОТО) — обобщенной теории тяготения, разработанной Эйнштейном (1916). При наличии в пространстве тяготеющих масс (т.е. и поля тяготения) пространство искривляется, становится неевклидовым. Движения тел в нем происходят по кратчайшему пути — по геодезическим линиям. Свойства пространства-времени определяются распределением и движением материи в пространстве.


Хотя в ОТО соотношение между количеством материи и степенью кривизны простое, но сложны расчеты — для описания кривизны в каждой точке нужно знать значения 20 функций пространственно-временных координат. Десять функций соответствуют части кривизны, которая распространяется в виде гравитационных волн, т. е. в виде «ряби» кривизны; остальные десять определяются распределением масс, энергии, импульса, углового момента, внутренних напряжений в веществе и значениями универсальной гравитационной постоянной G. Из-за малости величины G нужно много масс, чтобы существенно «изогнуть» пространство-время. Величину 1/G подчас считают мерой жесткости пространства-времени (и наше пространство-время очень жесткое). Вся масса Земли создает кривизну, составляющую порядка 10-9 кривизны своей поверхности. Чтобы представить кривизну пространства-времени вблизи Земли, подбросим мяч в воздух. Если он будет находиться в полете 2 с и опишет дугу в 5 м, то свет за эти 2 с пройдет расстояние 600 000 км. Если представить дугу высотой 5 м, вытянутую по горизонтали до 600 000 км, то ее кривизна и будет соответствовать кривизне пространства-времени. В отличие от теории гравитации Ньютона теория Эйнштейна претендует на теорию пространства-времени, т. е. на теорию Вселенной в целом.

Большинство экспериментальных данных о гравитации хорошо описывается в пространстве Евклида или в динамике Ньютона, но есть немногочисленные явления (отклонение света в поле тяготения или смещение перигелия Меркурия), которые противоречат теории Ньютона и хорошо объясняются в ОТО.

Характер физических законов существенно зависит от масштаба исследуемых явлений, и принято говорить о микро-, макро- и мегамире. Объектами микромира являются атомные ядра и молекулы, атомы и элементарные частицы. К объектам макромира относят живую клетку, человека и соизмеримые с ним предметы. Мегамир — это планеты, Солнце, звезды, галактики и вся Вселенная в целом. В мегамире существенную роль играют эффекты СТО и ОТО, преобладающим взаимодействием является гравитационное. В макромире законы движения тел определяются классической механикой, а в микромире — квантовой физикой.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.