Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Новые физические законы



 

 

«Если нам действительно удастся построить всеобъемлющую физическую теорию, то со временем ее основные принципы станут доступны пониманию каждого. И тогда все мы, философы, ученые, специалисты и нет, сможем принять участие в дискуссии о том, как же так получилось, что существуем мы и существует Вселенная. И если будет найден ответ на этот „последний“ вопрос, нам станет понятен замысел Бога».

 

Так Стивен Хокинг закончил свою недавно вышедшую книгу «От большого взрыва до черных дыр. Краткая история времени».

Точка зрения Хокинга отражает традиционные представления о конечной цели физики. В прошлом ученые неоднократно утверждали, что все великие проблемы рано или поздно будут решены и теоретической физике наступит конец. В наши дни эту веру зачастую связывают с созданием «Теории Всего Сущего» – магического сверхзакона, из которого можно будет вывести все формы физической реальности – от элементарных частиц до атомов химических элементов, галактик и черных дыр. Такая теория свела бы Вселенную к формальному тождеству – абстрактному вневременному описанию.

Однако утверждению о том, что физика близка к своему завершению, можно придать и совершенно иной смысл. Нобелевская конференция 1989 года в колледже Густава Адольфа (Сент‑Пол, штат Миннесота), была посвящена теме «Конец науки», но в эти слова вкладывали отнюдь не оптимистичное содержание. Организаторы конференции заявили: «Нас не покидает ощущение, что способность науки давать объективную картину действительности почти исчерпана». И далее: «Если же наука откажется от претензии открывать вневременные, универсальные законы и признает себя социальной и исторически ограниченной, то тогда уже нельзя будет утверждать, что она говорит о чем‑то реальном, лежащем вне самой науки».

Основной тезис предложенной концепции прямо противоположный: великие законы не есть «всего лишь» социальные или исторические конструкции, хотя, разумеется, любые научные представления несут на себе печать своей эпохи. Можно сказать, что и классический идеал объективности, подразумевающий отрицание времени, тоже имел свои исторические корни. Это был дерзновенный идеал, возникший на почве западной культуры в XVII веке.

Идея объективной физической реальности, воплощенная в динамическом описании, была результатом первой успешной попытки включить время в математическую схему. Более двух веков – от Галилея до Больцмана – ушло на то, чтобы понять цену этого достижения: за него пришлось заплатить противоречием между симметричными фундаментальными законами физики и нарушением симметрии времени в реально протекающих процессах.

Современная физика рассматривает стрелу времени как одну из существенных черт нашего мира. В последние десятилетия несколько научных направлений оспаривали привилегию придать конструктивный смысл идее, согласно которой мы живем во временном мире. Физические теории, которые сегодня строятся, – временные. Они охватывают законы и события, достоверность и вероятность. Вторжение времени в физику отнюдь не приводит к утрате объективности или познаваемости. Наоборот, оно открывает путь к новому, более глубокому пониманию.

Нарушение симметрии времени на микроскопическом уровне не есть результат отказа от идеала совершенного знания. К нему нас вынуждает динамика хаоса. Сначала неустойчивость возникла как ограничение, вызванное чувствительностью к начальным условиям, но теперь мы вышли за рамки «негативных» утверждений и пришли к формулировке законов природы, охватывающих хаос и стрелу времени. Изменение самого смысла слова «хаос» от нежелательного препятствия к самостоятельному объекту познания стало наиболее фундаментальным и неожиданным результатом исследования парадокса времени.

Включение в динамику вероятности и необратимости, конечно же, обусловлено глубинными процессами, идущими в самой науке. Стрела времени не проникла бы на фундаментальный уровень физики, не будь интенсивного поиска благоприятной возможности решения парадокса времени. Благоприятную возможность мы понимаем как исторический, идущий во времени диалог человека с природой. Диалог, в котором оперирование символами играет важную роль.

Символьное мышление порождает свой мир, который одновременно беднее и упрощеннее, богаче и содержательнее реального мира. Мысль, оперирующая символами, усиливает те аспекты классической и квантовой физики, которые делают акцент на симметрии во времени. Воплощенную в символах мысль можно сравнить с произведением искусства. Подобно ему, она способна возбуждать и чувство восхищения, и чувство неудовлетворенности. Она бросает нам вызов, побуждая идти вперед. При этом главный побудительный стимул концепции можно кратко выразить так: «Время не может возникнуть из вне времени. Вневременные законы нельзя считать окончательной истиной, ибо такая истина делает нас чужими в этом мире и сводит к простой видимости многообразие наблюдаемых явлений» (И.Р.Пригожин, И.Стенгерс).

Ту же неудовлетворенность выражали и другие физики. Так, Роджер Пенроуз в своей книге «Новый разум императора» заметил: «Непонимание нами фундаментальных законов физики не позволяет нам схватить суть разума в физических или логических терминах». Пенроуз также особо выделяет проблему времени. Он пишет: «По моему мнению, наша физическая картина мира в той своей части, что касается природы времени, чревата серьезными потрясениями, еще более сильными, чем те, что были вызваны теорией относительности и квантовой механикой». Однако, насколько можно судить, Пенроуз ожидает решения проблемы со стороны квантовой теории гравитации, которая должна будет объединить эти две теории.

Стратегия Пригожина более консервативна, поскольку он исходит из динамической неустойчивости, лежащей в фундаменте физики уже сегодня. Но Пенроуз прав в том, что нам действительно необходимо «новое понимание». Каждый период развития науки имеет свои ключевые нерешенные проблемы, вехи, указывающие направление дальнейшего развития. Величайшее удивление вызывает тот факт, что разрешение парадокса времени, возникшего в результате неудачной попытки Больцмана и Планка дать динамическую интерпретацию стрелы времени, позволило решить и два других парадокса – квантовый и, до некоторой степени, космологический.

И все же это можно было ожидать. Все три парадокса тесно связаны между собой. Исключение стрелы времени с необходимостью приводит к двойственному описанию Вселенной: с одной стороны, к микроскопическим, обратимым во времени законам, а с другой, – к феноменологическим законам с нарушенной симметрией времени. Здесь мы снова встречаемся с традиционным декартовским дуализмом между материей, характеризуемой протяженностью, и человеческим духом с его способностью мыслить. Общая теория относительности и квантовая механика служат хорошими примерами такого дуализма: первая стремится к геометрическому видению мира (утонченной форме декартовской протяженности); другая, с ее амплитудами вероятности, может быть уподоблена потенциальным, мыслимым возможностям (в отличие от актуальных, наблюдаемых вероятностей). Следует ли в таком случае рассматривать мир как потенциальную возможность для наших наблюдений?

Некоторые физики заходят так далеко, что в квантовой механике отводят человеческому разуму ключевую роль: по их мнению, мир, описываемый в терминах волновых функций, как бы жаждет обрести наблюдателя, который сможет актуализировать одну из его потенциальных возможностей.

В этом смысле организаторы Нобелевской конференции были правы: мы действительно подошли к «концу науки» – такой науки, которая связывает познание с открытием детерминистских вневременных законов, лежащих за рамками становления. Вспомним, что для Эйнштейна любое отклонение от этого идеала означало отказ от понимания мира, от основного назначения науки. Однако мы не можем по очевидным причинам согласиться с такими взглядами, сужающими смысл познания.

Там, где речь идет о живых существах, мы не отождествляем понимание с послушным выполнением правил – мы отказались бы признать настоящей кошку, поведение которой всегда было бы предсказуемым. А вот в физике мы зачастую думаем как раз наоборот. Нельзя не согласиться с Владимиром Набоковым, высказавшим такую мысль: «То, что полностью контролируемо, никогда не бывает вполне реальным. То, что реально, никогда не бывает вполне контролируемым».

Фундаментальные законы соединяли в себе два элемента, которые мы теперь в состоянии разделить. Один из них состоял в требовании подлинного диалога с природой, означающего, что человеческий разум должен строить математические зависимости, направляемые экспериментом. (С этой точки зрения, самая возможность универсальных законов природы не могла не вызывать удивление, что подтверждает скептический прием, оказанный в XVIII веке законам Ньютона.) Другой элемент – перспектива создания сверхнауки, которая должна заниматься изучением самих законов природы.

Весьма парадоксально, что западная наука, видевшая свою высшую цель в том, чтобы прислушиваться к фактам (в отличие от спекулятивных притязаний метафизики), как нельзя лучше соответствует тому, что Ричард Тарнас с полным основанием назвал «глубочайшей страстью западного ума к объединению с самой основой своего бытия». Открытие симметричных во времени детерминистских законов природы отвечало этому пристрастию, но ценой отторжения этой основы от созидающей временной реальности.

Ситуация изменилась: необратимость и вероятность стали объективными свойствами, отражающими тот факт, что физический мир не может быть сведен к отдельным траекториям (в ньютоновском описании) или волновым функциям (в шредингеровском). Новое представление об ансамблях не влечет за собой потери информации, напротив, оно позволяет более полно охватить свойства диссипативных хаотических систем.

Устойчивые и обратимые во времени классические системы, как мы теперь понимаем, соответствуют предельным, исключительным случаям (в квантовом мире положение сложнее, так как нарушение симметрии во времени есть необходимое условие для наблюдения микрообъектов – для перехода от амплитуд вероятности к самим вероятностям). Типичны именно неустойчивые хаотические системы, описываемые неприводимыми вероятностными законами, – они соответствуют подавляющему большинству случаев, представляющих физический интерес.

Причина успеха этого подхода кроется в обращении к новым математическим средствам. Хорошо известно, что задача, неразрешимая с помощью одного алгоритма, может стать разрешимой, если использовать другой. Например, вопрос о существовании корней алгебраического уравнения неразрешим в области вещественных чисел (оно может не иметь ни одного вещественного корня), но стоит перейти в область комплексных чисел, как ответ становится очень простым: каждое уравнение n‑степени имеет n корней. Поиск соотношения между проблемами и средствами, необходимыми для их решения, – процесс открытый, способный служить великолепной иллюстрацией творческого созидания, свободного и в то же время ограниченного решаемой задачей.

Как ни удивительно, но теперь ученые в состоянии решить и некоторые, не поддававшиеся прежде конкретные проблемы. В классической динамике законы хаоса ассоциируются с интегрированием «неинтегрируемых» систем Пуанкаре, а предложенные методы дают более мощные алгоритмы. Также и в квантовой механике они позволяют устранить трудности, стоящие на пути решения задачи на собственные значения (реализации программы Гейзенберга).

Даже такая простая проблема, как рассеяние частиц в потенциальном поле, приводит к неинтегрируемым системам Пуанкаре (интегрируемые системы Пуанкаре – это достаточно простые системы, в которых взаимодействие элементов можно математически исключить; в уравнениях, описывающих их движение, прошлое и будущее неразличимы. Неинтегрируемые – более сложные системы, в которых взаимодействие элементов становится принципиально важным – в них появляется стрела времени).

Введение неприводимых вероятностных представлений потребовало рассмотрения так называемых «обобщенных пространств». Гильбертово пространство само уже есть обобщение конечномерных векторных пространств (его элементы – уже не векторы, а функции), но в нем мы можем использовать только достаточно «хорошие» функции. В обобщенных же пространствах можно оперировать также сингулярными, или обобщенными функциями (эти функции позволяют математически корректно описывать используемые в физике идеализированные представления. Например, равная единице плотность массы материальной точки, расположенной в начале координат или электрического заряда, выражается? – функцией Дирака). Все это аналогично переходу от плоской евклидовой геометрии к искривленной римановой.

Другой существенный элемент теории – хронологическое, или временное, упорядочение. Гармонический осциллятор (классический или квантовый) обратим во времени. Но в неинтегрируемой системе возникает естественное упорядочение, задаваемое направленным течением самого процесса. Простейший пример – различие, возникающее в электродинамике между запаздывающими и опережающими потенциалами. Если устойчивые системы связаны с детерминистским, симметричным временем, то неустойчивые хаотические – с вероятностным, нарушающим равноправие прошлого и будущего.

Ограниченность традиционного описания в терминах отдельных траекторий или волновых функций не должна удивлять. Когда мы толкуем об архитектуре, мы имеем в виду не кирпичи, а здание в целом. Нередко приходится слышать, что история в наши дни ускорила свой бег; и в этом случае сказанное относится не к изменению природы отдельных людей, а к изменению отношений между ними из‑за небывалого развития средств связи. Даже рождение новых идей любым человеком обусловлено тем, что он погружен в разделяемый многими мир значений, проблем и отношений. Другими словами, это есть свойство всей системы в целом.

Ситуация, с которой мы сталкиваемся в физике, много проще. Однако и там нам надлежит отказаться от мнения, будто время есть параметр, описывающий движение отдельных элементов системы. Адекватное физическое описание хаотических процессов, которое включило бы в себя необратимость и вероятность, возможно только при их целостном рассмотрении на уровне ансамблей.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.