Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Вращение твердого тела



Момент количества движения

Закон сохранения момента количества движения

 

Центр масс

В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не инте­ресовала. В последующих нескольких главах мы изучим применение законов Ньютона к более сложным вещам. Но ведь чем сложнее объект, тем он интереснее, и вы сами увидите, что явления, связанные с такими более сложны­ми объектами, поистине поразительны. Разу­меется все эти явления не содержат ничего большего, чем комбинации законов Ньютона, однако временами просто трудно поверить, что все это произошло из F=ma!

Что это за более сложные объекты, с кото­рыми мы будем иметь дело в дальнейшем? Это может быть течение воды, вращение галактик и т. д. Но сначала давайте разберемся с наи­более простым из сложных объектов—твердым телом. Этим термином мы будем называть мо­нолитный объект, который одновременно с из­менением положения может еще и вращаться как целое. Впрочем, даже такой простой объ­ект может двигаться достаточно сложно, поэто­му давайте сначала рассмотрим наиболее прос­той случай движения, когда тело крутится во­круг неподвижной оси, причем каждая точка этого тела движется в плоскости, перпендику­лярной к этой оси. Такое вращение тела во­круг неподвижной оси называется плоским, или двумерным. Позднее, когда мы обобщим наш результат на случай трех измерений, вы увидите, что вращение гораздо более хитрая штука, чем механика частицы, и без доста­точного опыта в двух измерениях понять трех­мерные вращения очень трудно.

К первой интересной теореме о движении сложного тела можно прийти следующим образом: попробуйте бросить какой-нибудь предмет, состоящий из множества скрепленных между собой кубиков и стержней. Вы знаете, конечно, что он полетит по параболе; это мы обнаружили еще, когда изучали движение точки. Однако теперь наш объект не точка. Он поворачивается, покачивается и все же летит по параболе; вы можете в этом убедиться. Какая, же точка тела описывает параболу? Ну разумеется, не угол кубика, потому что он поворачивается, не конец стержня, не его середина и не центр кубика. Но все-таки что-то движется по параболе, существует некий эффек­тивный «центр», который движется по параболе. Таким образом, первая теорема о сложных объектах говорит, что сущест­вует какая-то «средняя» точка, вполне определенная математи­чески, которая движется по параболе. Точка эта не обяза­тельно находится в самом теле, она может лежать и где-то вне его.

Это так называемая теорема о центре масс, и доказывается она следующим образом.


Любой объект можно рассматривать как множество малень­ких частичек, атомов, связанных различными силами. Пусть i обозначает номер одной из таких частиц (их страшно много, по­этому i может быть равно, например, 1023). Сила, действующая на i-ю частицу, равна массе, умноженной на ускорение этой частицы:

 

В последующих главах наши движущиеся объекты и все их части будут двигаться со скоростями, много меньшими, чем скорость света, и поэтому для всех величин мы будем рас­сматривать только нерелятивистское приближение. Масса при этих условиях будет постоянна, так что

 

 



Если теперь сложить все силы, действующие на частицы, т. е. сложить все Fi- со всеми значениями индекса, то в результате мы должны получить полную силу F. Складывая же правые части уравнения (18.2) для всех частиц и вспоминая, что про­изводная от суммы равна сумме производных, получаем

 

 

Поэтому полная сила равна второй производной от суммы произведений масс частиц на их положение.

Но полная сила, действующая на все частицы,— это то же самое, что и внешняя сила. Почему? Да потому что, какие бы силы ни действовали между частицами, пусть это будет притя­жение или отталкивание, или атомные силы, все равно, когда мы складываем их вместе и применяем Третий закон Ньютона, по которому силы действия и противодействия между любыми двумя частицами равны друг другу, то эти взаимные силы сокращаются друг с другом и в результате останутся только силы, действующие со стороны атомов, находящихся вне тела. Так что, если уравнение (18.3) представляет собой сумму по некоторому числу частиц, образующих наш объект, то внешняя сила, действующая на него, равна просто сумме всех сил, действующих на все частицы, образующие этот объект. Урав­нение (18.3) неплохо было бы записать в виде полной массы тела, умноженной на какое-то ускорение. Сделать это можно. Пусть М будет суммой масс всех частиц, т. е. полной массой тела. Если теперь определить вектор R как

 

то, поскольку Мпостоянна, уравнение (18.3) перейдет в



 

Таким образом, внешняя сила равна полной массе, умно­женной на ускорение некоторой точки R; эта точка и называ­ется центром масс тела. Она расположена где-то в «середине» тела — некое среднее r, в котором различные ri учитываются в зависимости от их важности, т. е. в зависимости от того, какую долю вносят они в полную массу.

Мы подробно обсудим эту важную теорему несколько позд­нее, а сейчас остановимся на двух примерах. Пусть на тело не действуют никакие внешние силы, скажем, оно плавает где-то в пустом пространстве. Оно может делать все, что ему угодно: крутиться, покачиваться, изгибаться, но при этом его центр масс, эта искусственно выделенная нами математическая точка, должен двигаться, с постоянной скоростью. В частности, если вначале этот центр покоился, то он так и будет покоиться все время. Поэтому если мы возьмем какой-то космический корабль со всеми его пассажирами, вычислим его центр масс и обна­ружим, что он стоит на месте, то можно быть уверенным, что центр масс так и останется на месте, если только на корабль не будут воздействовать какие-то внешние силы. Сам корабль, конечно, может немного перемещаться, но это потому, что пассажиры внутри корабля ходят взад и вперед. Так, если все пассажиры одновременно перейдут в носовую часть, то корабль немного подастся назад, чтобы среднее положение всех масс осталось в точности на том же самом месте.

Означает ли это, что в результате неподвижности центра масс ракета не может двигаться вперед? Конечно, нет, но, чтобы продвинуть вперед интересующую нас часть ракеты, мы что-то должны выбросить назад. Иными словами, если вна­чале ракета покоилась, а затем выбросила из сопла некоторое количество газа, то газ этот полетит назад, а сама ракета по­летит при этом вперед, однако центр масс останется точно на том же месте, где он был и раньше. Так что в ракете интере­сующая нас часть продвинется вперед за счет другой, которая улетит назад.

Второе замечание относительно движения центра масс. Его можно рассматривать отдельно от всех «внутренних» дви­жений тела и, следовательно, его можно не учитывать при изучении вращения. Собственно поэтому мы начали изучать вращения с центра масс.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.