Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Генетический код. Основные свойства генетического кода. Расшифровка генетического кода в процессе синтеза белка в клетке



 

Генетическая информация о синтезе белка содержится в молекулах ДНК и закодирована с помощью генетического кода. Код, его структура и свойства были открыты в 1960 году.

Структура генетического кода характеризуется тем, что он является триплетным, т. Е. состоит из триплетов азотистых оснований ДНК, получивших название кодонов. 61 сочетаний нуклеотидов кодируют место аминокислоты в полипептидах. Три кодона не кодируют места аминокислот в полипептиде, детерминируют лишь останову синтеза полипептида. Это стоп-кодоны или терминирующие кодоны.

Свойства генетического кода – неперекрывающийся; линейный; не имеет пунктуации, обеспечивающей свободные пространства между кодонами; вырожденный.

Неперекрываемость означает, что любое азотистое основание является членом только одного кодона. Ни одно азотистое основание не входит сразу в 2 кодона.

Код является линейным по той причине, что молекулы ДНК являются линейными плимерами. Кодоны в виде триплетов азотистых оснований следуют вдоль молекулы ДНК без перерывов по направлению от 5-конца к 3-концу, причем между кодонами нет свободных пространств, нет пунктуации.

Вырожденность кода определяется тем, что место в полипептиде одной и той же аминокислоты может кодироваться одновременно несколькими кодонами, но не совместно, а раздельно. Это распространяется на все аминокислоты, кроме метионина и триптофана, которым соответствуют одиночные кодоны.

Расшифровка генетического кода в процессе синтеза белка в клетке.

Транскрипция – первый этап в передаче генетической информации, сущность которого заключается в синтезе мРНК, т.е. в переписывании генетической информации в молекулы мРНК. Основными структурами которые участвуют в транскрипции, являются ДНК-матрица, РНК-полимераза и хромосомные белки (гистоновые и негистоновые). Синтез молекул мРНК происходит в ядре и сходит с репликацией ДНК. Для переписывания используется только одна цепь ДНК. Копирование информации может начинаться с любого участка, к которому прикрепляется РНК-полимераза, и который называют промотором. Фермент (РНК-полимераза) расщепляет двойную цепочку ДНК, и на одной из её цепей (кодирующей) по принципу комплементарности выстраиваются нуклеотиды РНК. Синтезированная таким образом (матричный синтез) молекула иРНК выходит в цитоплазму и на один её конец нанизываются малые субъединицы рибосом и происходит сборка рибосом (соединение малой и большой субъединиц).

Трансляция – это перевод последовательности нуклеотидов в молекуле иРНК в последовательность аминокислот в полипептиде. Транспортные РНК (тРНК) «приносят» аминокислоты в большую субъединицу рибосомы. Молекула тРНК имеет сложную конфигурацию. На некоторых участках её между комплементарными нуклеотидами образуются водородные связи, и молекула по форме напоминает лист клевера. На её верхушке расположен триплет свободных нуклеотидов (антикодон), который соответствует определенной аминокислоте, а основание служит местом прикрепления этой аминокислоты. Каждая тРНК может переносить только свою аминокислоту. тРНК активируется специльными ферментами, присоединяет свою аминокислоту и транспортирует её в амминоацильный (аминокислотный) центр рибосомы. Если антикодон тРНК является комплементарным кодону иРНК, находящемуся в аминоацильном центре рибосомы, то происходит временное присоединение тРНК с аминокислотной к иРНК. После этого рибосома продвигается на один кодон вперед. Первая тРНК с аминокислотой оказывается в пептидильном центре рибосомы. В освободившийся аминоацильный центр поступает вторая тРНК с аминокислотой. Внутри рибосомы в каждый данный момент находится всего два кодона иРНК. Аминокислоты располагаются рядом в большой субъединице рибосомы, и с помощью ферментов между ними устанавливается пептидная связь. Одновременно разрушается связь между первой аминокислотой и её тРНК, и тРНК уходит из рибосомы за следующей аминокислотой. Рибосома перемещается на один триплет и процесс повторяется. Так постепенно наращивается молекула полипептида, в которой аминокислоты располагаются в строгом соответствии порядком кодирующих их триплетов (матричный синтез). Регуляция синтеза белка осуществляется специальными кодонами. Начало синтеза определяется кодоном-инициатором (АУГ), а окончание сборки молекулы белка – кодонами-терминаторами (УАА, УВГ, УГА). После завершения синтеза синтеза белковая молекула отделяется от рибосомы и приобретает свойственную ей (вторичную, третичную или четвертичную) структуру.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.