Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Анемометр ручной со счетным механизмом



Барометр

История: Поводом к изобретению барометра послужил давно известный простой насос. Подъем воды в насосе до середины XVII столетия объясняли тем, что природа боится пустоты. Однако, когда во Флоренции попробовали поднять воду насосом выше 32 пар. футов (10 м), то увидели, что она не пошла выше. Этот случай сделался известен Галилею, и его ученик Торричелли в 1643 сделал опыт со ртутью. Он наполнил ею стеклянную трубку, запаянную с одного конца, придержал пальцем и опустил в сосуд запаянным концом вверх. Когда он отнял палец, то ртуть в трубке оказалась поднятой над уровнем ртути в сосуде лишь на 760 мм, а сверху была пустота. Уже Торричелли дал верную теорию барометра, а именно, что столб жидкости в трубке уравновешивает давление воздуха на жидкость в сосуде. Пустота в верхней части барометрической трубки с того времени называется торричеллиевой. Оставалось сделать еще опыт для проверки теории Торричелли. Так как на горах вес или давление воздуха меньше, потому что лишь слои над местом наблюдения производят давление, то ртуть в трубке должна была стоять ниже, чем на равнине. Этот опыт был сделан в 1648 Перрье, зятем знаменитого Паскаля, по его настоянию. Перрье поднялся на гору Пюи-де-Дом в Оверни, 1467 м н. у. м., и нашел, что там барометр стоял на 80 мм ниже, чем у подошвы горы.

Для измерения давления воздуха и до сих пор употребляют ртутный барометр, и со временем было сделано много усовершенствований, дающих возможность наблюдать точнее.

Барометр ртутный

Простейший ртутный барометр (слева) представляет собой наполненную ртутью стеклянную трубку, опущенную открытым концом в чашку со ртутью. Ртуть в трубке поднимается и опускается в соответствии с изменениями погодных условий. В сифонном барометре (посередине) изменения уровня ртути в открытом конце трубки посредством грузика W с противовесом C передаются стрелке, которая указывает на надписи круговой шкалы, предсказывающие погоду. Барометр Фортина (справа) – это чашечный барометр, в котором нуль шкалы устанавливается путем вращения винта А до соприкосновения костяного острия T c поверхностью ртути; для более точного отсчета по шкале предусмотрен верньер (нониус).

 

 

Барометр-анероид

 

В анероиде жидкости нет (греч. «анероид» – «безводный»). Он показывает атмосферное давление, действующее на гофрированную тонкостенную металлическую коробку, в которой создано разрежение. При понижении атмосферного давления коробка слегка расширяется, а при повышении – сжимается и воздействует на прикрепленную к ней пружину. На практике часто используется несколько (до десяти) анероидных коробок, соединенных последовательно, и имеется рычажная передаточная система, которая поворачивает стрелку, движущуюся по круговой шкале, проградуированной по ртутному барометру. Как и у сифонного ртутного барометра , на шкале анероида могут быть сделаны надписи («дождь», «переменно», «ясно», «очень сухо»), указывающие на погодные условия.

 

Чувствительным элементом анероида служит гибкая герметическая металлическая коробка (сильфон), расширяющаяся или сжимающаяся под действием атмосферного давления. В приборе обычно предусматриваются несколько анероидных коробок, снабженных рычажной передачей, которая перемещает стрелку по круговой шкале. На схеме AB – рычаг, поворачивающийся относительно шарнирной опоры C, а DEF – коленчатый рычаг с шарнирной опорой E.

Анероид меньше ртутного барометра, и его показания легче снимать. Им можно пользоваться в экспедиционных условиях, на морских судах, самолетах и пр. Если к его стрелке прикрепить перо, то он будет записывать показания. Такие барографы, т.е. анероиды, регистрирующие барометрическое давление, имеются на всех метеостанциях.

 

 

Барограф

 

Барограф: 1 — анероидные коробки; 2 — перо; 3 — бумажная лента; 4 — барабан, приводимый в движение часовым механизмом.

 

Распространены на практике анероидные барографы , приёмная часть которых состоит из нескольких анероидных коробок 1, скрепленных вместе. При изменении атмосферного давления коробки сжимаются или растягиваются, в результате чего их крышка перемещается вверх или вниз. Это перемещение передаётся перу 2, которое чертит кривую на разграфленной ленте. 1 мм записи по вертикали соответствует около 1 мбар (1 мбар=100 н/м2). По времени полного оборота барабана 4 подразделяются на суточные и недельные. Работа барографа. контролируется сравнением его с ртутным барометром.

Барограф с повышенной чувствительностью называется Микробарографом, изменение давления в 0,1 мбар соответствует 1—3 мм вертикального перемещения пера.

Применяется на метеорологических станциях, а также на самолётах и аэростатах для регистрации высоты (по изменению давления).

Флюгер

Флюгер-это прибор для определения направления и измерения скорости ветра. Направление ветра определяется по положению двухлопастной флюгарки, состоящей из 2 пластин 1, расположенных углом, и противовеса 2. Флюгарка, будучи укреплена на металлической трубке 3, свободно вращается на стальном стержне. Под действием ветра она устанавливается по направлению ветра так, что противовес направлен навстречу ему. На стержень надета муфта 4 со штифтами, ориентированными соответственно основным Румбам. По положению противовеса относительно этих штифтов и определяют направление ветра.

Скорость ветра измеряется при помощи отвесно подвешенной на горизонтальной оси 5 металлической пластины (доски) 6. Доска вращается вокруг вертикальной оси вместе с флюгаркой и под действием ветра всегда устанавливается перпендикулярно потоку воздуха. В зависимости от скорости ветра доска Ф. отклоняется от отвесного положения на тот или иной угол, отсчитываемый по дуге 7. Ф. ставят на мачте на высоте 10–12 м от поверхности земли.

Анемометр ручной со счетным механизмом

Самый простой тип анемометров — это чашечный анемометр. Он был изобретён доктором Джоном Томасом Ромни Робинсоном в обсерватории Армы, в 1846 году. Он состоял из четырёх чашек полусферической формы, насаженных на спицы ротора, вращавшегося на вертикальной оси

.

Горизонтальный поток воздуха с любого направления вращал ротор со скоростью, соответствующей скорости ветра.

Робинсон считал, что для его анемометра линейная скорость движения чашек составляет одну треть скорости ветра независимо от размера чашек и длины спиц; отдельные эксперименты того времени это подтверждали. На самом деле это неверно, т.н. "коэффициент анемометра" (обратная величина) для простейшей конструкции Робинсона зависит от размеров чашек и спиц и лежит в пределах от двух до чуть более трёх.

Трёхчашечный ротор, предложенный канадцем Джоном Паттерсоном в 1926 году, и последующие усовершенствования формы чашек Бревортом и Джойнером в 1935-м сделали чашечный анемометр линейным в диапазоне до 100км/ч (27м/с) с погрешностью около 3%. Паттерсон обнаружил, что каждая чашка даёт максимальный вращающий момент, будучи повёрнутой на 45° к направлению ветра (?). Трёхчашечный анемометр отличается бóльшим вращающим моментом и быстрее отрабатывает порывы, чем четырёхчашечный.

Оригинальное усовершенствование чашечной конструкции, предложенное австралийцем Дереком Вестоном (1991), позволяет с помощью того же ротора определять не только скорость, но и направление ветра. Оно заключается в установке на одну из чашек флажка, из-за которого скорость колеса меняется в течение одного оборота (пол-оборота флажок движется по ветру, пол-оборота - против). Зная угол этой неравномерности относительно "статора" метеостанции, можно определить и направление ветра.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.