Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Where a catalyst is already working as fast as it can



Suppose you are using a small amount of a solid catalyst in a reaction, and a high enough concentration of reactant in solution so that the catalyst surface was totally cluttered up with reacting particles.

Increasing the concentration of the solution even more can't have any effect because the catalyst is already working at its maximum capacity.

In certain multi-step reactions

This is the more important effect from an A' level point of view. Suppose you have a reaction which happens in a series of small steps. These steps are likely to have widely different rates - some fast, some slow.

For example, suppose two reactants A and B react together in these two stages:

The overall rate of the reaction is going to be governed by how fast A splits up to make X and Y. This is described as the rate determining step of the reaction.

If you increase the concentration of A, you will increase the chances of this step happening for reasons we've looked at above.

If you increase the concentration of B, that will undoubtedly speed up the second step, but that makes hardly any difference to the overall rate. You can picture the second step as happening so fast already that as soon as any X is formed, it is immediately pounced on by B. That second reaction is already "waiting around" for the first one to happen.

Note: The overall rate of reaction isn't entirely independent of the concentration of B. If you lowered its concentration enough, you will eventually reduce the rate of the second reaction to the point where it is similar to the rate of the first. Both concentrations will matter if the concentration of B is low enough.

However, for ordinary concentrations, you can say that (to a good approximation) the overall rate of reaction is unaffected by the concentration of B.

The best specific examples of reactions of this type comes from organic chemistry. These involve the reaction between a tertiary halogenoalkane (alkyl halide) and a number of possible substances - including hydroxide ions. These are examples of nucleophilic substitution using a mechanism known as SN1.

Note: If you are interested in exploring nucleophilic substitution reactions further, you could follow this link.

Otherwise, you can find more about how the relationship between concentration and rate of reaction is affected by reaction mechanisms by exploring the topics at the bottom of the rates of reaction menu (link below).

THE EFFECT OF PRESSURE ON REACTION RATES

This page describes and explains the way that changing the pressure of a gas changes the rate of a reaction.

 

The facts

What happens?

Increasing the pressure on a reaction involving reacting gases increases the rate of reaction. Changing the pressure on a reaction which involves only solids or liquids has no effect on the rate.

 

An example

In the manufacture of ammonia by the Haber Process, the rate of reaction between the hydrogen and the nitrogen is increased by the use of very high pressures.

In fact, the main reason for using high pressures is to improve the percentage of ammonia in the equilibrium mixture, but there is a useful effect on rate of reaction as well.

Note: If you want to explore equilibria you will find the topic covered in a separate section of the site.

The explanation

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.