Для упомянутой в предыдущем разделе плоской стенки справедлив следующий закон теплопередачи (Дж/с):
,
где в коэффициенте теплопередачи k 1Дж/(м2*с*К)] наряду с коэффициентом теплопроводности [Дж/Дм*с*К)] учтены также и коэффициенты теплоотдачи и [Дж/(м2*c*К)] обеих сторон стенки. На плоскую стенку, через которую проходит измеряемый тепловой поток, накладывают небольшую тонкую пластинку, температуру поверхности которой определяют встроенными тонкопленочными термопарами. Преимущество измерения таким способом заключается в том, что при этом не требуется знать термические свойства стенки, а соответствующие свойства пластинки могут быть сведены при градуировке к одной постоянной величине. Такие чувствительные элементы имеют размер примерно 30x30x0,5 мм; диапазон измерения охватывает тепловые потоки от 10 до 100 000 Вт/м2; погрешность составляет 2—5 %. Изготовители: например, фирмы Knick (ФРГ), Neumann (ФРГ), TPD Delft (Нидерланды).
При усовершенствовании этого метода измерений Э. Шмидт вместо накладываемой пластинки применил резиновые маты. Приклеивая их к неплоским поверхностям или обертывая ими криволинейную поверхность, можно определить теплоотдачу и от поверхности сравнительно большой площади, например от трубы, сосуда и т. п. Термопары встраивают в обе поверхности мата с таким расчетом, чтобы их горячие с холодные спаи располагались точно один против другого (рис. 6). И в этом случае плотность теплового потока в соответствии с градуировкой пропорциональна разности температур. Однако накладываемые маты несколько нарушают первоначальный теплообмен, что становится заметным при точных измерениях. Поэтому такой способ измерения применяют главным образом для определения термодинамических констант вещества, когда нарушение теплового потока не оказывает влияния на результат измерения.
Рисунок 7. Схема составления теплового баланса при измерении тепловых потоков
Измерение тепловых потоков в текущих средах.
Значительная часть тепловой энергии передается жидкой или газообразной средами (водой, паром и т. п.), движущимися в замкнутой трубопроводной сети. Однако по сравнению с передачей электрической энергии по проводам расстояние, на которое может быть передана тепловая энергия, ограничено. Для теплотехнических исследований всех видов нагревательных и холодильных систем нужно измерять выделение и потребление тепла.
Тепловой поток Ф (Дж/с), передаваемый потоком среды — теплоносителя (кг/с) через контрольное сечение площадью А (м2)в определенной зоне, для которой составлен тепловой баланс (в зоне процесса, рис. 7), равен
.
Количество тепла, отданного за отрезок времени t2 - t1определится как интеграл (Дж):
где — разность теплосодержаний (энтальпий, Дж/кг) теплоносителя на входе (индекс е) и на выходе (индекс а) зоны теплового баланса.
Поскольку в общем случае величина энтальпии представляет интерес только в сопоставлении с определенным уровнем, например с энтальпией при температуре окружающей среды, все измерения тепловых потоков являются в сущности разностными измерениями.
Отдельные энтальпии, входящие в общее уравнение, можно выразить через соответствующие температуры и удельные теплоемкости;
, Дж/с.
Таким образом, измерение теплового потока непосредственно сводится к измерению температур и массовых расходов. Во многих случаях измеряют не массовый , а объемный расход теплоносителя ; при этом полученный результат будет отличаться только на величину плотности теплоносителя р. Удельные теплоемкости сi, сами являются функциями температуры . Однако ввиду узости диапазона измерения многих приборов их обычно можно считать постоянными величинами без большого ущерба для точности. Удельная теплоемкость должна быть известна. Для жидкостей уравнение теплового потока еще более упрощается, так как их удельные теплоемкости не зависят от давления:
, Дж/с.
Во всех уравнениях такого вида необходимо принимать во внимание знаки величин в зависимости от того, подводится или отводится тепло, является ли процесс эндотермическим или экзотермическим, происходит ли охлаждение или нагрев.