С точки зрения взаиморасположения источника зондирующего излучения, объекта и детектора томографические методы могут быть разделены на следующие группы:
трансмиссионные— регистрируется зондирующее внешнее излучение, прошедшее через пассивный (неизлучающий) объект, частично ослабляясь при этом;
эмиссионные — регистрируется излучение, выходящее из активного (излучающего) объекта с некоторым пространственным распределением источников излучения;
комбинированные трансмиссионно-эмиссионные (люминесцентные, акустооптические и оптоакустические и др.) — регистрируется вторичное излучение от источников, распределенных по объему объекта и возбужденных внешним излучением;
эхозондирование — регистрируется зондирующее внешнее излучение, отраженное от внутренних структур пассивного объекта.
Развитие методов радионуклидной диагностики представляет собой увлекательное сочетание развития радиофармацевтики и физических методов регистрации ионизирующих излучений. Искусственные радионуклиды появились лишь после изобретения в 1931 г. Лоуренсом циклотрона, а первым в 1938 г. на циклотроне в Беркли был синтезирован радионуклид 99Тсm. Но эра ядерной медицины наступила вслед за пуском первого ядерного реактора (1942 г.) с момента начала поставок радиоактивных изотопов потребителям в 1946 г.
Методы получения изображений с помощью радиофармпрепаратов начали развиваться (не считая более раннего периода развития детекторов и методов регистрации излучений) с 1948 г., когда Энселл и Ротблат осуществили поточечную регистрацию изображения щитовидной железы. Затем последовал период интенсивного развития этих методов, который можно условно разбить на следующие этапы: автоматическое сканирование, гамма-камера, однофотонная эмиссионная компьютерная томография (ОФЭКТ), позитронная эмиссионная томография (ПЭТ). Процесс развития шел непрерывно и не всегда возможно назвать одного изобретателя того или иного аппарата, но можно назвать тех, кто внес основной вклад.
Так, методы сканирования начались в 1950-1951 г.г. с работ Кассена и Мейниорда. Идея гамма-камеры (1949) принадлежит Коупленду и Бенжамину, а основной вклад в развитие этого метода и создание принципиально новых приборов начиная с 1952 г. внесли Энгер и Мэллард.
В последующие годы, используя гамма-камеру Anger как прототип, ведущие мировые производители медицинского оборудования предложили на рынок множество самых разнообразных моделей этого аппарата. Гамма-камера дает возможность для одномоментной регистрации излучения инкорпорированного РФП без перемещения детектора над пациентом. Этим гамма-камера выгодно отличается от изобректенных ранее сканеров, которые позволяют получить картины пространственного распределения РФП лишь за счет механического перемещения детектора с тяжелой защитой, что делает невозможной визуализацию быстропротекающих физиологических процессов. Современные гамма-камеры, оснащенные специализированным или универсальным компьютером, обеспечивают хорошее пространственное разрешение и высокую скорость регистрации излучения.
Развитие однофотонной эмиссионной компьютерной томографии (ОФЭКТ) на первом этапе связано с именами: Кул и Эдвардс (1963-1964 г.г.), Мюленер и Боули с соавторами (1971-1977 г.г.). Сегодня гамма-камеры и ОФЭКТ имеют очень большое распространение в мире (десятки тысяч) и широкие диагностические возможности.
Ядерная медицина – это область медицинской практики, в которой для диагностики используют открытые радиофармацевтические препараты. Основная часть такой диагностики включает два различных подхода:
Исследования «in vivo», при которых радиоактивные вещества вводят в организм пациента как для оценки функции органа, так и для получения его изображения;
Исследования «in vitro», которые проводятся с помощью радиоиммунологического анализа (или родственных способов) без введения радиоактивных веществ в организм пациента.
Смысл радионуклидных диагностических исследований заключается в изучении как статических, так и биокинетических процессов в организме. Последним они принципиально отличаются от рентгеновской диагностики и, благодаря именно этому качеству в медицине существует потребность в данном виде диагностики, несмотря на определенные лучевые нагрузки на персонал и пациентов при проведении радионуклидных исследований. Общее между рентгенологическими исследованиями и радионуклидной диагностикой - использование ионизирующего излучения. Все рентгенологические исследования, включая КТ, базируются на фиксации прошедшего через тело пациента, т.е. пропущенного, излучения. В то же время радионуклидная визуализация основана на регистрации излучения, испускаемого находящимися внутри пациента радиоактивным веществом.
РФП могут использоваться как для диагностических, так и для терапевтических целей. Все они имеют в своем составе радионуклиды - нестабильные атомы, спонтанно распадающиеся с выделением энергии. При синтезе РФП радионуклид соединяется с молекулой-носителем, определяющей его распределение в организме. Идеальный РФП распространяется в организме только в пределах, предназначенных для визуализации определенных органов и структур. Запись характеристик радиоактивности может в дальнейшем предоставить важную функциональную информацию. Способность изучения физиологических функций главное преимущество радионуклидной визуализации по сравнению с альтернативными радиологическими методиками. Относительный недостаток - низкое пространственное разрешение.
В идеальном случае период полураспада радионуклида должен быть примерно равен 1/3 продолжительности исследования, которая находится в диапазоне от десяти минут до нескольких часов. Это должно ограничить наличие существенной радиоактивности рамками обследования, без чрезмерного воздействия излучения на пациента после его завершения. Процесс радиоактивного распада может сопровождаться испусканием альфа-, бета-, или гамма-лучей. Для целей визуализации предпочтительнее использовать радионуклиды, испускающие гамма-кванты (высокоэнергетическое электромагнитное излучение). Альфа -частицы (ядра гелия) и бета-частицы (электроны) не используются для целей визуализации из-за плохого прохождения через ткани. Подобно рентгеновским лучам, проникающая способность гамма-излучения возрастает с увеличением энергии фотонов. С другой стороны, энергия не должна быть чрезмерно велика, чтобы фотоны не проходили через детектор без поглощения. Для радионуклидной визуализации предпочтительна энергия в диапазоне 50-300 кэВ, идеальная энергия 150 кэВ.
РНДИ основаны на использовании радиоизотопных индикаторов в медицинских целях, для чего применяются РФП – меченые радиоизотопом химические соединения. Они либо вводятся непосредственно в организм пациента (in vivo), либо смешиваются в пробирках с биологическими реагентами пациента (in vitro). В том и другом случае количество введенного препарата незначительно, но современная аппаратура (гамма-камера) позволяет измерять даже малые количества радиоактивности и с помощью компьютера расшифровывает полученное изображение, точно указывая местонахождение патологического очага. Это и разнообразные функциональные возможности позволяют РНДИ осуществлять своевременную диагностику на ранних стадиях развития болезней, оставаясь в ряде случаев единственным средством получения необходимой диагностической информации
В клинической практике все большее значение приобретают мало травматические средства определения состояния разных органов и систем организма, такие как иммуноферментный и радио иммунологический (РИА) анализы. Клиницистов привлекает безопасность и высокая информативность РИА. Этот очень точный и чувствительный метод (что обусловлено принципом иммунологических реакций), не связанный с лучевой погрузкой на пациента, который дает возможность проводить такие исследования в динамике всем категориям пациентов.
Среди радиофармацевтических препаратов, используемых в ядерной медицине, значительная часть приходится на генераторные, в частности, технеций-99м. Использование подобных короткоживущих радионуклидов обеспечивает заметное снижение дозы облучения пациентов, но при этом возрастают дозы на обслуживающий персонал. К МРП относятся радиоактивные фармацевтические препараты (РФП) (табл. 1), используемые при проведении радионуклидных диагностических исследований (РНДИ).
К МРИ относятся изделия, в конструкциях которых применяются радиоактивные источники ионизирующего излучения, используемые для проведения терапевтических процедур (табл. 2).