Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Метод наименьших квадратов



 

Нач­нем с простого случая: один фактор, линейная модель. Интересующая нас функция отклика (которую мы будем также называть уравнением регрессии) имеет вид

Это хорошо известное уравнение прямой линии. Наша цель – вычисление неизвестных коэффициентов b0и b1. Мы провели эксперимент, чтобы использовать при вычис­лениях его результаты. Как это сделать наилучшим обра­зом?

Если бы все экспериментальные точки лежали строго на прямой линии, то для каждой из них было бы справед­ливо равенство

,

где i = 1, 2, ..., N – номер опыта. Тогда не было бы никакой проблемы. На практике это равенство нарушается и вместо него приходится писать

,

где – разность между экспериментальными и вычис­ленными по уравнению регрессии значениями y в i-й экспе­риментальной точке. Эту величину иногда невязкой.

Мы хотим найти такие коэффициенты регрессии, при которых невязки будут минимальны. Это требо­вание можно записать по-разному. В зависимости от этого мы будем получать разные оценки коэффициентов. Вот одна из возможных записей

,

которая приводит к методу наименьших квадратов.

Когда мы ставим эксперимент, то обычно стремимся провести больше (во всяком случае, не меньше) опытов, чем число неизвестных коэффициентов. Поэтому система линейных уравнений

оказывается переопределенной и часто противоречивой (т. е. она может иметь бесконечно много решений или может не иметь решений). Переопределенность возникает, когда число уравнений больше числа неизвестных; противоре­чивость – когда некоторые из уравнений несовместимы друг с другом.

Только если все экспериментальные точки лежат па прямой, то система становится определенной и имеет единственное решение.

МНК обладает тем замечательным свойством, что он делает определенной любую, произвольную систему уравнений. Он делает число уравнений равным чис­лу неизвестных коэффициентов.

Для определения двух неизвестных коэф­фициентов требуется два уравнения. Давайте попробуем их получить.

Мини­мум некоторой функции, если он существует, достигается при одновременном равенстве нулю частных производных по всей неизвестным, т. е.

.

В явном виде это запишется как

,

.

Окончательные формулы для вычисления коэффи­циентов регрессии, которые удобно находить с помощью определителей, имеют вид

,

.

 

Величина называется остаточной суммой квадратов ( – значение параметра оптимизации, вычисленное из уравнения регрессии). МНК гарантирует, что эта величина минимально возможная.

Обобщение на многофакторный случай не связано с какими-либо принципиальными трудностями.

Воспользуемся тем, что матрицы планирования ортогональны и нормированы, т.е.

и

Для любого числа факторов коэффициенты будут вычисляться по формуле

В этой формуле j = 0, 1, 2 ..., k – номер фактора. Ноль записан для вычисления b0.

Так как каждый фактор (кроме x0)варьируется на двух уровнях +1 и –1, то вычисления сводятся к приписыванию столбцу y знаков соответствующего фактору столбца и алгебраическому сложению полученных значений. Де­ление результата на число опытов в матрице планирова­ния дает искомый коэффициент

 

 

Регрессионный анализ.

После нахождения коэффициентов модели возникает задача установить пригодность модели и значимость коэффициентов. С этого момента метод наименьших квадратов превращается в регрессионный анализ. А регрессионный анализ как всякий статистический метод, применим при определенных предположениях, постулатах.

Первый постулат. Параметр оптимизации y есть случайная величина с нормальным законом распределения. Дисперсия воспроизводимости – одна из харак­теристик этого закона распределения.

В данном случае, как и по отношению к любым другим постулатам, нас интересуют два вопроса: как проверить его выполнимость и к чему приводят его нарушения?

При наличии большого экспериментального материала (десятки параллельных опытов) гипотезу о нормальном рас­пределении можно проверить стандартными статистичес­кими тестами (например, – критерием). К сожалению, экспериментатор редко располагает такими данными, поэтому приходится принимать этот постулат на веру.

При нарушении нормальности мы лишаемся возмож­ности установления вероятностей, с которыми справедливы те или иные высказывания. В этом таится большая опас­ность. Мы рискуем загипнотизировать себя численными оценками и вероятностями, за которыми ничего не стоит. Вот почему надо очень внима­тельно относиться к возможным нарушениям предпосылок.

Второй постулат. Дисперсия y не зависит от абсо­лютной величины y. Выполнимость этого постулата проверяется с помощью критериев однородности дисперсий в разных точках фак­торного пространства. Нарушение этого постулата недо­пустимо.

Всегда существует та­кое преобразование y,которое делает дисперсии одно­родными. Увы, его не всегда легко найти. Довольно часто помогает логарифмическое преобразование, с которого обычно начинают поиски.

Третий постулат. Значения факторов суть неслу­чайные величины. Это несколько неожиданное утверждение практически означает, что установление каждого фактора на заданный уровень и его поддержание существенно точнее, чем ошибка воспроизводимости.

Нарушение этого постулата приводит к трудностям при реализации матрицы планирования. Поэтому оно обычно легко обнаруживается экспериментатором.

Проверка адекватности модели. Проверка на пригодность полученной модели (проверка адекватности) начинают с вычисления остаточной дисперсии, то есть дисперсии адекватности .

где - число опытов (МПЭ),

- число коэффициентов модели.

- разность между реальным значением и предсказанным по модели.

Числом степеней свободы в статистике называется разность между числом опытов и числом коэффициентов (констант), которые уже вычислены по результатам этих опытов независимо друг от друга.

Например, проведен полный фактический эксперимент и нашли линейное уравнение регрессии, .

Примечание: Параллельные опыты нельзя считать самостоятельными, так как они дублируют друг друга. В связи с этим, они все дают одну степень свободы.

Необходимо запомнить правило:

В планировании эксперимента число степеней свободы для равно числу различных опытов, результаты которых используются при подсчете коэффициентов регрессии, минус число определяемых коэффициентов.

В статистике разработан критерий, который очень удобен для проверки гипотезы об адекватности модели. Он называется F критерием Фишера и определяется:

,

где - дисперсия адекватности;

- дисперсия воспроизводимости.

Удобство использования -критерия состоит в том, что проверку ги­потезы можно свести к сравнению с табличным значением. Таблица построена следующим образом. Столбцы связаны с определенным числом степеней свободы для числителя строки для знаменателя . На пересечении соответствующих строки и столбца стоят критические значения - критерия. Как правило, в технических задачах используется уровень значимости 0,05.

Если рассчитанное значение -критерия не превышает табличного, то с соответствующей доверительной вероятностью модель можно считать адекватной. При превышении табличного значения гипотеза отвергается. Для запишем общую формулу:

,

где - число опытов;

- число параллельных опытов в -ой строке матрицы;

- среднее арифметическое из , параллельных опытов;

- предсказанное по уравнению регрессии значение в этом опыте.

 

Существует еще четвертый постулат, налагающий ог­раничения на взаимосвязь между значениями факторов. У Нас он выполняется автоматически в силу ортогональ­ности матрицы планирования.

При выполнении этих четырех условий метод наименьших квадратов дает несмещенные оценки b0 и b1 параметров b0 и b1 .

В случае нахождения доверительной области для коэффициентов b0 и b1 должно выполняться еще одно предположение:

- условие распределения при заданном значении нормально относительно математического ожидания .

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.