Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Неравноценность различных форм энергии



Механическая и электрическая энергия и работа, проявляющиеся в макроскопическом перемещении тел, допускают практически обратимые взаимные переходы. Такие технические устройства, как электрогенераторы и электромоторы имеют коэффициенты преобразования механической энергии в электрическую и обратно, близкие к 100%. Таким образом, механическая и электрическая энергии равноценны.

Как электрическая, так и механическая энергия легко могут быть обращены в тепловую энергию. Так, изолированное вещество может быть нагрето за счет выделения теплоты при прохождении электрического тока или в результате интенсивного вращения мешалки. Однако невозможно самопроизвольное протекание обратных процессов – генерирование электрического тока или раскручивание мешалки в результате остывания того же вещества. Теплота, проявляющаяся как результат хаотического микроскопического движения молекул вещества, может быть преобразована в механическую или электрическую работу лишь частично. Притом чем большая часть теплоты, выделяемой в каком-либо процессе, может быть превращена в работу, тем выше энергетическая ценность данного источника теплоты.

В химических процессах также лишь часть внутренней энергии вещества может быть переведена в работу.

Ранее было сказано, что Второе начало выступает как «диспетчер», определяющий направление энергетических потоков Это направление указывает изменение энтропии. Энергия всегда переходит от более качественного состояния к менее качественному. Энтропия при этом возрастает

 

Существует ряд формулировок второго начала термодинамики:

1. В природе невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от менее нагретого к более нагретому.

2. КПД любой тепловой машины всегда <100%, т.е. невозможен вечный двигатель (perpetuum mobile) II рода (т.к. невозможно построить тепловую машину, работающую не за счет перепада теплоты, а за счет теплоты одного нагревателя.

3. Энтропия изолированной системы не убывает (т.е. при протекании обратимых процессов энтропия постоянна, а при необратимых процессах она возрастает). Энтропия системы, находящейся в равновесном состоянии максимальна и постоянна.

Все, что выше говорилось об энтропии связано с её так называемой термодинамической трактовкой, т.е. объяснением с позиций термодинамики (за исключением самой последней формулировки, касающейся равновесного состояния). Последняя связана также с таким понятием как вероятность. Далее рассмотрим эту связь подробнее.


Вопрос 25. Энтропия. Вероятностная трактовка.

 

Макроскопическое и микроскопическое описание объектов природы

Различные объекты и явления природы (системы) могут быть описаны как на микро-, так и на макроуровне, на основе их микросостояния или макросостояния. Сами понятия микро- и макро- отражают, в какой-то степени, наши представления о размерах объектов природы.

Макросостояние

Состояние макроскопического тела (системы), заданное с помощью макропараметров (т.е. параметров, которые могут быть измерены макроприборами – давления, температуры, объемы и другими макроскопические величины, характеризующие систему в целом), называют макросостоянием.

Микросостояние

Состояние макроскопического тела, охарактеризованное настолько подробно, что заданы состояния всех образующих тело молекул, называется микросостоянием.

 

Термодинамика, как уже говорилось, рассматривает тепловые процессы в системах на макроскопическом уровне, оперируя макропараметрами: температура, теплота, давление, объем. Статистическая физика, или молекулярно-кинетическая теория, рассматривает тепловые явления на микроуровне – с точки зрения движения молекул, их скорости, кинетической энергии. Термодинамика, опираясь на понятие энтропии, четко различает обратимые и необратимые процессы. Способна ли не это статистическая физика? Другими словами, существует ли понятие, аналогичное энтропии для микросостояния? Утвердительно ответить на этот вопрос позволили работы великого австрийского физика Людвига Больцмана, в которых отличие обратимых процессов от необратимых было сведено с макроскопического уровня на микроскопический.

Проведем вслед за Л.Больцманом мысленный эксперимент. Выделив некоторую молекулу в сосуде с теплоизолированными стенками (рис.3) и наблюдая за ней, мы убедимся, что она может занимать любой положение в сосуде. Если же мысленно разделить объем на две половины, то в этом случае молекула, беспорядочно блуждая, сталкиваясь с другими молекулами, пробудет в одной половинке сосуда ровно половину времени, в течение которого мы ее наблюдаем. В этом случае говорят, что вероятность ее пребывания в одной из половинок сосуда равна ½. Вероятность может принимать значения от 0 до 1. Если же мы будет наблюдать уже за двумя мечеными молекулами, то вероятность того, что мы обнаружим сразу обе молекулы в одной половинке сосуда, равна 1/2×1/2=1/4.

Аналогично, для трех молекул эта вероятность (обозначим ее W) равна (1/2)3, а для N молекул W=(1/2)N. Т.е. вероятность стремительно падает. Таким образом, такое событие является маловероятным. Это понятно нам и на основе нашего жизненного опыта. Странно было бы, если бы все молекулы воздуха вдруг собрались бы в одной половине комнаты, а в другой образовалось безвоздушное пространство. Вероятность же того, что все молекулы находятся во всем объеме сосуда максимальна и равна 1. Число способов, которыми это состояние может быть реализовано, или статистический вес является также максимальным.

 

 

Пусть в некоторый момент времени удалось загнать все молекулы в правую верхнюю часть сосуда, отделенную диафрагмой. Остальные ¾ этого объема остались пустыми. После того как мы уберем диафрагму молекулы равномерно заполнят весь объем сосуда, т.е. перейдут из состояния с меньшей вероятностью в состояние с большей вероятностью. Таким образом, мы и здесь можем сказать, что процессы в системе идут только в одном направлении: от некоторой структуры (порядка, когда молекулы содержались в верхнем правом углу объема сосуда) к полной симметрии (хаосу, беспорядку, когда молекулы могут занимать любые точки пространства сосуда). Последнее состояние можно назвать состоянием равновесия. Все это наволит на мысль, что должна существовать связь между вероятностью и энтропией.

Если мы рассмотрим две подсистемы какой либо системы, каждая из которых характеризуется своим статистическим весом (вероятностью состояния) W1 и W2, то полный статистический вес системы равен произведению статистических весов подсистем:

W = W1×W2,

а энтропия системы S равна сумме энтропии подсистем S = S1 + S2.

Это наталкивает на мысль, что связь вероятности (статистического веса) и энтропии должна выражаться через логарифм:

Ln W = Ln (W1×W2) = Ln W1 + Ln W2 = S1 + S2 .

 

Собственно, это и сделал Больцман, связав понятие энтропии S c Ln W. Уже позднее, в 1906 г. Макс Планк написал формулу, выражающую основную мысль Больцмана об интерпретации энтропии как логарифма вероятности состояния системы:

S = k Ln W.

Эта формула выгравирована на памятнике Больцману на венском кладбище.

Коэффициент пропорциональности k был рассчитан Планком и назван им постоянной Больцмана.

 


Вопрос 26. Понятие «стрела времени» и его разновидности

 

Время – одно из самых загадочных понятий философии и естествознания. Это – одно из фундаментальных понятий научной картины мира. Блаженный Августин, христианский теолог и церковный деятель (354-430) признавался: пока его никто не спрашивает о том, что такое время, он это понимает, но когда хочет ответить на такой вопрос, попадает в тупик. «Душа моя горит желанием проникнуть в эту необъяснимую для нее тайну» – говорил он.

Нам известно одно неотъемлемое свойство времени – его направленность от прошлого к будущему.

Действительно, при описании любых явлений, с которыми человеку приходится иметь дело, прошлое и будущее играют разные роли. Это справедливо для физики, изучающей макроскопические явления (для микромира, на фундаментальном уровне описания этой направленности времени не существует), биологии, геологии, гуманитарных наук. Почему это именно так и не иначе? Известный физик Эддингтон придумал яркое название «стрела времени».

Английский астрофизик Фрейд Хойл высказал мысль о связи направления времени с направлением процесса увеличение расстояния между галактиками в ходе расширения Вселенной, которое наблюдается в настоящее время. Эту идею поддержал и Эддингтон. Однако расширение Вселенной, о котором свидетельствует т.н. «красное смещение» спектральных линий в излучении удаляющихся друг от друга галактик («разбегания» галактик) не означает расширения в каждом месте, иначе расширялись бы размеры тел, а этого не наблюдается. А поскольку нет этого общего физического влияния, разбегание галактик или расширения Вселенной не может влиять на ход времени в элементарных процессах. Связь с расширением Вселенной может определять только «космологическую шкалу времени».

Существует и субъективное восприятие течения времени в результате психологических процессов, которые дают нам «психологическую шкалу времени». Вопрос о психологическом времени сам по себе очень сложен. Для обычного — «природного» человека в первобытном, доцивилизованном племени время текло то быстро (например, ночью), то медленно (в минуты томительного ожидания) и сосредоточивалось в настоящем (по принципу «здесь и сейчас»). Прошлое при этом было вечным и, в то же время, одномоментным. Мы сохранили много пережитков субъективного восприятия времени. В частности, отмечая юбилейные даты, мы почти отождествляем их с первоначальным событием.

В то же время во Вселенной идет необратимый процесс роста энтропии. Не он ли определяет стрелу времени? Действительно, согласно Больцману, возрастание энтропии означает необратимость процесса и рассматривается как проявление возрастающего хаоса, постепенного «забывания» начальных условий. Таким образом, термодинамические процессы определяют и «термодинамическую шкалу времени».

Итак, фактически мы имеем три «стрелы времени»:

· космологическую (расширение Вселенной);

· психологическую (субъективное восприятие, опыт);

· термодинамическую (рост энтропии).

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.