Возможность построения машины без холодильника, т.е. с КПД = 1, которая могла бы превращать в работу всю теплоту, заимствованную у теплового резервуара, не противоречит закону сохранения энергии. Такая машина, по сути, была бы аналогична perpetuum mobile (вечному двигателю), так как могла бы производить работу за счет практически неисчерпаемых источников энергии, содержащихся в воде морей, океанов, атмосфере и недрах Земли. Такую машину У.Оствальд (1853-1932) назвал perpetuum mobile II рода (в отличие от perpetuum mobile I рода – вечного двигателя, производящего работу из ничего). Карно же исходил из невозможности вечного двигателя, опираясь на многочисленные опытные факты и утверждая, что в любом непрерывном процессе превращения теплоты от горячего нагревателя в работу непременно должна происходить отдача тепла холодильнику.
Таким образом, здесь проявляется общее свойство теплоты – уравнивание температурной разницы путем перехода от теплых тел к холодным. Это положение Клаузиус и предложил назвать «Вторым началом механической теории теплоты».
Если Первое начало термодинамики утверждает закон сохранения энергии, ее баланс, то Второе начало определяет направления превращения энергии, и если в предыдущем вопросе Первому началу была сопоставлена роль «бухгалтера», то Второе начало выступает скорее как «диспетчер», определяющий направление энергетических потоков.
Для идеальной машины Карно следует
Q1/T1 = Q2/T2или Q1/T1 - Q2/T2 = 0,
где Q1 –теплота, сообщаемая газу, Q2 – теплота, отводимая.
Для того, чтобы учесть, что Q2 отдается холодильнику, берем его со знаком “ - “. Тогда имеем:
Q1/T1 + Q2/T2 = 0.
Далее будем писать DQ вместо Q, подчеркивая, что речь идет о некоторой порции DQ1, полученной рабочим телом от нагревателя и порции DQ2, потерянной им в холодильнике:
DQ1 /Т1 + DQ2/Т2 = 0.
Как видим, эта запись напоминает закон сохранения, но при этом появляется некоторая «интересная» величина DQ /Т.
Так в физике появилось новое понятие «энтропия». «Entropia» (греч.) – поворот, превращение. Ввел его в 1865 году Клаузиус. Он предположил, что есть некоторая величина S, которая, подобно энергии, давлению, температуре, характеризует состояние газа. Когда к газу подводится некоторое количество DQ, то S возрастает на величину DS= DQ /Т.
Ранее говорилось о том, что раньше не делалось различий между понятиями теплота и температура.
После введения понятия энтропии стало ясно, где пролегает эта граница. Дело в том, что нельзя говорить о том, что в теле заключено какое-то количество теплоты. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она (теплота) не является сохраняющей величиной. Поэтому теплота определяется в физике не как вид энергии, а как мера изменения энергии. А вот энтропия в обратимых процессах (в частности в идеальном цикле Карно) сохраняется.
Энтропия, таким образом, характеризует состояние системы.
Можно провести некоторую аналогию с потенциальной энергией. Действительно, так же как каждому уровню высоты над поверхностью Земли отвечает своя потенциальная энергия, так и каждому состоянию термодинамической системы отвечает своя энтропия.
Как работа в поле тяжести (потенциальном поле) не зависит от вида пути, а зависит только от изменения потенциальной энергии, так и энтропия не зависит от вида процесса и определяется исключительно изменением состояния системы как конечным результатом процесса.
Все это означает, что энтропия системы может рассматриваться как функция состояния системы, т.к. изменение ее не зависит от вида процесса, а определяется лишь начальным и конечным состоянием системы.
Итак, для обратимых процессов имеем DS=сonst, т.е. энтропия изолированной системы в случае обратимых процессов постоянна.
Заметим, что для осуществления необратимого процесса необходимо добиться очень медленного расширения или сжатия рабочего тела, чтобы изменения системы представляли собой последовательность равновесных состояний. В таком цикле совершение любой полезной работы потребует практически бесконечно большого времени. Чтобы получить работу за короткие, т.е. приемлемые промежутки времени (хорошую мощность), приходится «уходить» от идеального цикла. Это приведет к неодинаковости температуры на разных участках цикла, к перетеканию тепла от более горячих участков к менее горячим и, следовательно, к возрастанию энтропии DS>0.
Понятие энтропии позволяет определить направление протекания процессов в природе, поскольку тот факт, что энтропия изолированной системы не может убывать, а только возрастает, является отражением того, что в природе существуют процессы, протекающие только в одном направлении - в направлении передачи тепла от более горячих тел к менее горячим.
Вопрос 24. Неравноценность различных форм энергии. Формулировки второго начала термодинамики.