Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

БУМАЖНО-МАСЛЯНЫЕ КОНДЕНСАТОРЫ



 

1.8.27. Бумажно-масляные конденсаторы связи, отбора мощности, делительные конденсаторы, конденсаторы продольной компенсации и конденсаторы для повышения коэффициента мощности испытываются в объеме, предусмотренном настоящим параграфом; конденсаторы для повышения коэффициента мощности напряжением ниже 1 кВ - по п. 1,4, 5; конденсаторы для повышения коэффициента мощности напряжением 1 кВ и выше - по п. 1, 2, 4, 5; конденсаторы связи, отбора мощности и делительные конденсаторы - по п. 1-4.

Таблица 1.8.28. Наибольшее допустимое отклонение емкости конденсаторов

Наименование или тип конденсатора Допустимое отклонение, %
Конденсаторы для повышения коэффициента мощности напряжением:  
до 1050 В ±10
выше 1050 В +10 -5
Конденсаторы типов:  
СМР-66/ , СМР-110/ +10 -5
СМР-166/ , СМР-133/ , ОМР-15 ±5
ДМР-80, ДМРУ-80, ДМРУ-60, ДМРУ-55, ДМРУ-110 ±10

Таблица 1.8.29. Испытательное напряжение промышленной частоты конденсаторов для повышения коэффициента мощности

Испытуемая изоляция Испытательное напряжение, кВ, для конденсаторов с рабочим напряжением, кВ
0,22 0,38 0,50 0,66 3,15 6,30 10,50
Между обкладками 0,42 0,72 0,95 1,25 5,9 11,8
Относительно корпуса 2,1 2,1 2,1 5,1 5,1 15,3 21,3

Таблица 1.8.30. Испытательное напряжение промышленной частоты для конденсаторов связи, отбора мощности и делительных конденсаторов

Тип конденсатора Испытательное напряжение элементов конденсатора, кВ
СМР-66/
СМР-110/ 193,5
СМР-166/ 235,8
ОМР-15 49,5
ДМР-80, ДМРУ-80, ДМРУ-60, ДМРУ-55
ДМРУ-110

 

1. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции между выводами и относительно корпуса конденсатора и отношение не нормируются.

2. Измерение емкости. Производится при температуре 15-35°С. Измеренная емкость должна соответствовать паспортным данным с учетом погрешности измерения и приведенных в табл. 1.8.28 допусков.

Таблица 1.8.31. Испытательное напряжение для конденсаторов продольной компенсации

Тип конденсатора Испытательное напряжение, кВ
промышленной частоты относительно корпуса постоянного тока между обкладками конденсатора
КПМ-0,6-50-1 16,2 4,2
КПМ-0,6-25-1 16,2 4,2
КМП-1-50-1 16,2 7,0
КМП-1-50-1-1 - 7,0

 

3. Измерение тангенса угла диэлектрических потерь. Производится для конденсаторов связи, конденсаторов отбора мощности и делительных конденсаторов. Измеренные значения тангенса угла диэлектрических потерь для конденсаторов всех типов при температуре 15-35°С не должны превышать 0,4%.

4. Испытание повышенным напряжением. Испытательные напряжения конденсаторов для повышения коэффициента мощности приведены в табл. 1.8.29; для конденсаторов связи, конденсаторов отбора мощности и делительных конденсаторов - в табл. 1.8.30 и конденсаторов продольной компенсации - в табл. 1.8.31.

Продолжительность приложения испытательного напряжения 1 мин.

При отсутствии источника тока достаточной мощности испытания повышенным напряжением промышленной частоты могут быть заменены испытанием выпрямленным напряжением удвоенного значения по отношению к указанному в табл. 1.8.29-1.8.31.

Испытание повышенным напряжением промышленной частоты относительно корпуса изоляции конденсаторов, предназначенных для повышения коэффициента мощности (или конденсаторов продольной компенсации) и имеющих вывод, соединенный с корпусом, не производится.

5. Испытание батареи конденсаторов трехкратным включением. Производится включением на номинальное напряжение с контролем значений токов по каждой фазе. Токи в различных фазах должны отличаться один от другого не более чем на 5%.

ВЕНТИЛЬНЫЕ РАЗРЯДНИКИ

 

1.8.28. Вентильные разрядники после установки на месте монтажа испытываются в объеме, предусмотренном настоящим параграфом.

1. Измерение сопротивления элемента разрядника. Производится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции элемента не нормируется. Для оценки изоляции сопоставляются измеренные значения сопротивлений изоляции элементов одной и той же фазы разрядника; кроме того, эти значения сравниваются с сопротивлением изоляции элементов других фаз комплекта или данными завода-изготовителя.

2. Измерение тока проводимости (тока утечки). Допустимые токи проводимости (токи утечки) отдельных элементов вентильных разрядников приведены в табл. 1.8.32.

Таблица 1.8.32. Ток проводимости (утечки) элементов вентильных разрядников

Тип разрядника или его элементов Выпрямленное напряжение, приложенное к элементу разрядника, кВ Ток проводимости элемента разрядника, мкА Верхний предел тока утечки, мкА
РВВМ-3РВВМ-6РВВМ-10 400-620 -
РВС-15РВС-20 РВС-33, РВС-35 400-620 -
РВО-35 70-130 -
РВМ-3 380-450 -
РВМ-6 120-220 -
РВМ-10 200-280 -
РВМ-15 500-700 -
РВМ-20 500-700 -
РВП-3 -
РВП-6 -
РВП-10 -
Элемент разрядников РВМГ-110, РВМГ-150, РВМГ-220, РВМГ-330, РВМГ-500 900-1300 -
Основной элемент разрядника серии РВМК 900-1300 -
Искровой элемент разрядника серии РВМК 900-1300 -
Основной элемент разрядников РВМК-330П, РВМК-500П 900-1300 -

Таблица 1.8.33. Пробивное напряжение искровых промежутков элементов вентильных разрядников при промышленной частоте

Тип элемента Пробивное напряжение, кВ
Элемент разрядников РВМГ-110, РВМГ-150, РВМГ-220 59-73
Элемент разрядников РВМГ-330, РВМГ-500 60-75
Основной элемент разрядников РВМК-330, РВМК-500 40-53
Искровой элемент разрядников РВМК-330, РВМК-500, РВМК-550П 70-85
Основной элемент разрядников РВМК-500П 43-54

 

3. Измерение пробивных напряжений при промышленной частоте. Пробивное напряжение искровых промежутков элементов вентильных разрядников при промышленной частоте должно быть в пределах значений, указанных в табл. 1.8.33.

Измерение пробивных напряжений промышленной частоты разрядников с шунтирующими резисторами допускается производить на испытательной установке, позволяющей ограничивать ток через разрядник до 0,1 А и время приложения напряжения до 0,5 с.

ТРУБЧАТЫЕ РАЗРЯДНИКИ

 

1.8.29. Трубчатые разрядники испытываются в объеме, предусмотренном настоящим параграфом.

1. Проверка состояния поверхности разрядника. Производится путем осмотра перед установкой разрядника на опору. Наружная поверхность разрядника не должна иметь трещин и отслоений.

2. Измерение внешнего искрового промежутка. Производится на опоре установки разрядника. Искровой промежуток не должен отличаться от заданного.

3. Проверка расположения зон выхлопа. Производится после установки разрядников. Зоны выхлопа не должны пересекаться и охватывать элементы конструкций и проводов, имеющих потенциал, отличающийся от потенциала открытого конца разрядника.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.