В настоящее время особое значение в процессе управления приобретают методы оптимизации, основанные на применении формальных, чаще всего математических моделей, обеспечивающих экономию времени и средств при решении многих практических задач. Построение моделей помогает привести сложные и подчас неопределенные факторы, связанные с проблемой принятия решений, в логически стройную схему, определить, какие данные необходимы для оценки и выбора альтернатив.
В процессе управления возникает естественное стремление к отысканию решения, которое объективно является наилучшим из всех возможных. В качестве инструмента оптимизации сейчас широко используется математическое программирование. Успехи в применении математического программирования к решению различного рода экономических задач породили методологические воззрения, согласно которым кардинальное решение проблем управления возможно только тогда, когда все его аспекты отображаются в системе взаимосвязанных математических моделей.
Однако, формализация технико-экономических и управленческих решений осложняется рядом особенностей современного этапа научно-технического прогресса. Жизнь общества настолько сложна и многообразна, что трудно рассчитывать на появление моделей, которые полностью отражали бы природу и количественные взаимосвязи социально-экономических процессов. Реальная действительность всегда сложнее самых тонких математических моделей, а ее развитие часто опережает формальное познание. Задачи управления требуют в качестве неотъемлемого элемента решения участия людей. И, наконец, сам процесс управления всегда предполагает ориентацию не только на числовые данные, но и на обычный здравый смысл. Использование математического программирования и вычислительной техники позволяет принимать решения, основанные на более полной и надежной информации. Но, несомненно и то, что при любых условиях для выбора рационального решения требуется нечто большее, чем хорошая математическая модель. Принимая решения, мы обычно предполагаем, что информация, используемая для их обоснования, достоверна и надежна. Но для многих экономических и научно-технических задач, являющихся по своему характеру качественно новыми и неповторяющимися, это предположение либо заведомо не реализуется, либо в момент принятия решения его не удается доказать.
Наличие информации и правильность ее использования в значительной степени предопределяют оптимальность выбранного решения. Кроме данных, состоящих из числовых статистических величин, информация включает в себя другие, не поддающиеся непосредственному измерению величины, например, предположения о возможных решениях и их результатах. Практика показывает, что основные трудности, возникающие при поиске и выборе деловых решений, обусловлены прежде всего недостаточно высоким качеством и неполнотой имеющейся информации.
Основные трудности, связанные с информацией, возникающие при выработке сложных решений, можно охарактеризовать следующим образом.
Во-первых, исходная статистическая информация зачастую бывает недостаточно достоверной.
Во-вторых, некоторая часть информации имеет качественный характер и не поддается количественной оценке. Так, нельзя точно рассчитать степень влияния социальных и политических факторов на реализацию планов, оценить экономический эффект будущих изобретений и т.д. Но, поскольку эти факторы и явления оказывают существенное влияние на результаты решений, их нельзя не учитывать.
В-третьих, в процессе подготовки решений часто возникают ситуации, когда в принципе необходимую информацию получить можно, однако в момент принятия решения она отсутствует, поскольку это связано с большими затратами времени или средств.
В-четвертых, существует большая группа факторов, которые могут повлиять на реализацию решения в будущем, но их нельзя точно предсказать.
В-пятых, одна из наиболее существенных трудностей при выборе решений состоит в том, что любая научная или техническая идея содержит в себе потенциальную возможность различных схем ее реализации, а любое экономическое действие может приводить к многочисленным исходам. Проблема выбора наилучшего варианта решения может возникнуть и потому, что обычно существуют ограничения в ресурсах, а следовательно, принятие одного варианта всегда связано с отказом от других решений.
В-шестых, при выборе наилучшего решения мы нередко сталкиваемся с многозначностью обобщенного критерия, на основе которого можно произвести сравнение возможных исходов. Многозначность, многомерность и качественное различие показателей являются серьезным препятствием для получения обобщенной оценки относительной эффективности, важности, ценности или полезности каждого из возможных решений.
В связи с этим одна из главных особенностей решения сложных проблем состоит в том, что применение расчетов здесь всегда переплетается с использованием суждений руководителей, ученых, специалистов. Эти суждения позволяют хотя бы частично компенсировать недостаток информации, полнее использовать индивидуальный и коллективный опыт, учесть предположения специалистов о будущих состояниях объектов. Опыт показывает, что использование несистематизированных суждений отдельных специалистов оказывается при решении многих сложных научных и технических проблем недостаточно эффективным вследствие многообразия взаимосвязей между основными элементами таких проблем и невозможности охвата их всех. При использовании традиционных процедур подготовки решений нередко не удается рассмотреть широкий диапазон факторов, учесть весь спектр альтернативных путей решения проблем.