Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

СЛЕДЯЩИЙ ЭЛЕКТРОПРИВОД



Следящим называется электропривод, который обеспечивает с заданной точностью движение исполнительного органа рабочей машины в соответствии с произвольно изменяющимся сигналом управления. Этот сигнал управления может изменяться в широких пределах по произвольному временному закону и иметь как механическую, так и электрическую природу. Чаще всего входной сигнал представляет собой скорость или угол поворота оси или вала. Следящий электропривод применяется для антенн радиотелескопов и систем спутниковой связи, в копировальных станках, для привода исполнительных органов роботов и манипуляторов, в автоматических измерительных устройствах и во многих других случаях.

Структурная схема следящего электропривода представлена на рис. 6.13. Он состоит из датчиков 1 и 2 входного и выходного сигналов, измерителя рассогласования 3, системы управления 4 и электродвигателя с механической передачей 5, который приводит в движение исполнительный орган 6 в рабочей машине.

Датчики входной и выходной величин преобразуют механические величины (скорость или угол поворота вала) в электрические – входной сигнал Uвх и сигнал обратной связи Uо,с. Измеритель рассогласования 3, алгебраически суммируя эти сигналы, вырабатывает сигнал рассогласования UD, поступающий в систему управления электродвигателем 4. Следящий электропривод по своей структуре представляет собой замкнутую автоматическую систему.

Система управления 4 состоит из усилителя (регулятора) и силового преобразователя, которые обеспечивают необходимое преобразование сигнала рассогласования UD в напряжение U, поступающее на двигатель. За счет выбора схем усилителя (регулятора) и преобразователя или введения корректирующих устройств обеспечивается необходимый закон изменения этого напряжения во времени u(t).

Электродвигатель и механическая передача 5 в соответствии с законом изменения u(t) обеспечивают перемещение исполнительного органа 6. Иногда двигатель с механической передачей называют исполнительным механизмом (сервомеханизмом).

Классификация следящего электропривода может быть выполнена по нескольким признакам. Если следящий электропривод предназначен для воспроизведения с заданной точностью скорости движения исполнительного органа, то он называется скоростным, а если положения – то позиционным.

По виду характеристики системы управления 5 различают следящие электроприводы с непрерывным или прерывным управлением; последние, в свою очередь, делятся на релейные и импульсные.

Отличительной особенностью следящих электроприводов непрерывного действия является непрерывное управление электродвигателем, пропорциональное сигналу рассогласования.

Следящий электропривод релейного действия характеризуется тем, что напряжение на двигатель подается только в том случае, когда сигнал рассогласования достигает определенного значения. До этого значения сигнала рассогласования напряжение на двигатель не подается и он неподвижен. Поэтому релейный следящий электродвигатель имеет определенную зону нечувствительности.

Импульсный следящий электропривод отличается тем, что управляющее воздействие на электропривод подается в виде импульсов напряжения, амплитуда, частота или скважность которых изменяется в зависимости от сигнала рассогласования. В этих случаях говорят соответственно об амплитудно-, частотно- и широтно-импульсной модуляции сигнала управления.

В следящем электроприводе используются двигатели переменного и постоянного тока, различные виды усилителей (электромашинные, магнитные, полупроводниковые, пневматические, гидравлические), датчики скорости и положения.

а) Следящий электропривод постоянного тока непрерывного действия с ЭМУ

Схема следящего электропривода этого вида приведена на рис. 6.14. Двигатель постоянного тока независимого возбуждения М приводит в движение рабочую машину РМ через механическую передачу Р. Якорь двигателя М получает питание от электромашинного усилителя поперечного поля (ЭМУ), который в этой схеме выполняет функции силового преобразователя и одного из усилителей системы.

В качестве датчиков входной Qвх и выходной Qвых величин в данной схеме используются сельсины, работающие в трансформаторном режиме. Один из них, называемый сельсином-приемником СП, является датчиком выходной величины Qвых и устанавливается на валу редуктора Р. Другой сельсин, называемый сельсином-датчиком СД, преобразует входной сигнал Qвх в электрический. При показанном на схеме соединении обмоток статоров СД и СП и питании обмотки ротора СД однофазным напряжением переменного тока Uв напряжение на обмотке ротора СП будет пропорционально разности углов Qвх и Qвых, т. е.

(6.9)

а фаза этого напряжения будет определяться знаком угла рассогласования Q.

Следовательно, в рассматриваемой схеме включения сельсины СД и СП позволяют выделить сигнал рассогласования т. е. выполняют одновременно функции измерителя рассогласования (элемент 3 на рис. 6.13) и датчиков входной и выходной величин.

Сигнал рассогласования переменного тока поступает на вход фазочувствительного усилителя У1, который усиливает его и преобразует в сигнал постоянного тока, полярность которого определяется фазой сигнала , т. е. знаком разности углов Qвх и Qвых. Далее этот сигнал, пройдя через корректирующее звено (резисторы R1, R2 и конденсатор С1), поступает на вход усилителя У2, который осуществляет дополнительное усиление сигнала рассогласования.

Выходное напряжение усилителя У2, представляющее собой результирующий сигнал управления следящего электропривода UD, подается на обмотки управления ЭМУ ОУ-I и ОУ-II, включенные по дифференциальной схеме с нулевой точкой. В результате такого включения магнитный поток ЭМУ определяется разностью МДС обмоток ОУ-I и ОУ-II, т. е. разностью токов, протекающих по этим обмоткам. Полярность напряжения U на выходе ЭМУ, подаваемого на якорь двигателя М определяется знаком (полярностью) сигнала UD.

Помимо корректирующего звена, состоящего из элементов R1, R2 и С1, в схеме используется дополнительное корректирующее звено, в состав которого входят резисторы R3, R4 и конденсатор С2. Эти корректирующие звенья обеспечивают требуемое качество регулирования выходных координат электропривода Qвых и в динамических режимах его работы.

Работа следящего электропривода происходит следующим образом.

В исходном, согласованном положении Qвх=Qвых, и двигатель М неподвижен. При изменении Qвх возникает угол рассогласования Q между положениями роторов сельсинов СП и СД и в соответствии с (6.9) на обмотке ротора СП появляется сигнал . В зависимости от фазы этого сигнала, которая определяется знаком разности , на двигатель М будет подано напряжение U такой полярности, при которой вращение двигателя и исполнительного органа рабочей машины РМ будет происходить в направлении, уменьшающем угол рассогласования Q. При достижении углом рассогласования Q нулевого значения и постоянстве Qвх двигатель М отключается и вновь будет находиться в неподвижном состоянии. Таким образом, следящий электропривод работает только при возникновении угла рассогласования между осями датчика и приводного двигателя (исполнительного органа рабочей машины). Процесс работы следящего электропривода сводится к непрерывному автоматическому устранению возникающего рассогласования.

Рассматриваемый следящий электропривод с ЭМУ применяется на мощности от нескольких ватт до десятков киловатт. Он отличается высокой перегрузочной способностью, не вносит искажения в форму питающего напряжения, а при торможении двигателя обеспечивает рекуперацию энергии в сеть. Переход из режима двигателя в режим генератора обеспечивается естественными характеристиками электрических машин и происходит без резких изменений момента двигателя, что имеет большое значение для получения требуемых точности и плавности работы следящего электропривода.

Вместе с тем следящий электропривод, в котором используются электромашинные преобразователи и усилители, характеризуется существенными недостатками. Это относительно невысокое быстродействие, значительные массы и габариты силовой части электропривода, невысокий КПД (0,5–0,6), значительный уровень шума за счет вращающихся частей электромашинного агрегата.

В связи со сказанным в современных системах следящего электропривода обычно используются статические полупроводниковые усилители и преобразователи, применение которых позволяет устранить большинство из отмеченных недостатков, свойственных электромашинным преобразователям.

б) Следящий электропривод постоянного тока с тиристорным преобразователем

Схема следящего электропривода с ДПТ, якорь которого питается от реверсивного ТП, приведена на рис. 6.15.

Особенностью данного электропривода является применение измерительной схемы на основе двух синусно-косинусных вращающихся трансформаторов (СКВТ). Один из них – СKВТ-Д является датчиком входного сигнала Qвх, а другой – СКВТ-П – датчиком выходной величины Qвых. СКВТ имеет на статоре и роторе по две взаимно перпендикулярно расположенные в пространстве обмотки, схема соединения которых видна из рисунка. При повороте ротора СKВТ-Д в обмотках ротора наводится переменная ЭДС, амплитуда которой пропорциональна одной обмотке и – в другой. В остальном принцип измерения угла рассогласования 6=6вх–6вых и выделения сигнала рассогласования Уд е=о такой же, что и в случае применения сельсинов, однако СКВТ обеспечивают большую точность.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.