Кардинальным способом увеличения пропускной способности ОП стал переход к стандарту DDR. Динамическая память DDR SDRAM пришла на смену синхронной SDRAM и обеспечила в два раза большую пропускную способность. Аббревиатура DDR (Double Data Rate) означает удвоенную скорость передачи данных. Как уже отмечалось выше, основным сдерживающим элементом увеличения тактовой частоты ра-боты памяти является ядро памяти (массив элементов хранения – Memory Cell Array). Однако, кроме ядра в модуле памяти присутствуют и буферы промежуточного хранения (буферы ввода-вывода – I/O Buffers), через которые ядро памяти обменивается данными с шиной памяти. Эти буферы могут иметь значительно более высокое быстродействие, чем само ядро, поэтому тактовую частоту работы шины памяти и буферов обмена можно легко увеличить. Именно такой способ и используется в DDR-памяти. Рассмотрим предельно упрощенную схему функционирования памяти типа SDRAМ. Ядро SDRAM-памяти и буферы ввода-вывода работают в синхронном режиме на одной и той же частоте. Передача каждого бита из буфера на шину происходит с каждым тактом работы ядра памяти. При переходе от SDRAM к DDR технология одинарной скорости передачи данных заменяется на удвоенную за счет того, что передача данных от микросхем памяти модуля к контроллеру памяти по внешней шине данных осуществляется по обоим полупериодам синхросигнала (восходящему – «фронту», и нисходящему – «срезу»). В этом и заключается суть технологии «Double Data Rate – DDR», именно поэтому «эффективная» частота памяти DDR-400 составляет 400 МГц, тогда как ее истинная частота, или частота буферов ввода-вывода, составляет 200 МГц. Таким образом, каждый буфер ввода-вывода передает на шину два бита информации за один такт, оставаясь при этом полностью синхронизированным с ядром памяти. Однако, чтобы такой режим работы стал возможным, необходимо, чтобы эти два бита были доступны буферу ввода-вывода на каждом такте работы памяти. Для этого требуется, чтобы каждая команда чтения приводила к передаче из ядра памяти в буфер сразу двух бит по двум независимым линиям передачи внутренней шины данных. Из буфера ввода-вывода биты данных затем поступают на внешнюю шину в требуемом порядке. Иными словами, можно сказать, что при прочих равных условиях внутренняя шина данных должна быть вдвое шире по сравнению с внешней шиной данных. Такая схема доступа к данным называется схемой «2n-предвыборки» (2n-prefetch). DDR-память, как и SDRAM, предназначалась для работы с системными частотами 100, 133, 166, 200, 216, 250 и 266 МГц. Нетрудно рассчитать пропускную способность DDR-памяти. Принимая, что ширина внешней шины данных составляет 8 байт, для памяти DDR-400 получаем 400 МГц х 8 байт = 3,2 Гбайт/с.
Методы повышения пропускной способности оперативной памяти (расслоение обращений)
Другой способ повышения пропускной способности ОП связан с построением памяти, состоящей на физическом уровне из нескольких модулей (банков) с автономными схемами адресации, записи и чтения. При этом на логическом уровне управления памятью организуются последовательные обращения к различным физическим модулям. Обращения к различным модулям могут перекрываться, и таким образом образуется своеобразный конвейер. Эта процедура носит название расслоения памяти. Целью данного метода является увеличение скорости доступа к памяти посредством совмещения фаз обращений ко многим модулям памяти. Известно несколько вариантов организации расслоения. Наиболее часто используется способ расслоения обращений за счет расслоения адресов. Этот способ основывается на свойстве локальности программ и данных, предполагающем, что адрес следующей команды программы на единицу больше адреса предыдущей (линейность программ нарушается только командами перехода). Аналогичная последовательность адресов генерируется процессором при чтении и записи слов данных. Таким образом, типичным случаем распределения адресов обращений к памяти является последовательность вида а, а + 1, а + 2, ... Из этого следует, что расслоение обращений возможно, если ячейки с адресами а, а + 1, а + 2, ... будут размещаться в блоках 0, 1, 2, ... Такое распределение ячеек по модулям (банкам) обеспечивается за счет использования адресов вида где В – k-разрядный адрес модуля (младшая часть адреса) и С – n-разрядный адрес ячейки в модуле В (старшая часть адреса). Все программы и данные «размещаются» в адресном пространстве последовательно. Однако ячейки памяти, имеющие смежные адреса, находятся в различных физических модулях памяти. Если ОП состоит из 4-х модулей, то номер модуля кодируется двумя младшими разрядами адреса. При этом полные m-разрядные адреса 0, 4, 8, ... будут относиться к блоку 0, адреса 1, 5, 9, ... – к блоку 1, адреса 2, 6, 10, ... – к блоку 2 и адреса 3, 7, 11, ... – к блоку 3. В результате этого последовательность обращений к адресам 0, 1, 2, 3, 4, 5, ... будет расслоена между модулями 0, 1, 2, 3, 0, 1, ... Поскольку каждый физический модуль памяти имеет собственные схемы управления выборкой, можно обращение к следующему модулю производить, не дожидаясь ответа от предыдущего. Время доступа к каждому модулю составляет t = 4Т, где Т = ti+1 – ti – длительность такта. В каждом такте следуют непрерывно обращения к модулям памяти в моменты времени t1, t2, t3, … . При наличии четырех модулей темп выдачи квантов информации из памяти в процессор будет соответствовать одному такту Т, при этом скорость выдачи информации из каждого модуля в четыре раза ниже. Задержка в выдаче кванта информации относительно момента обращения также составляет 4Т. При реализации расслоения по адресам число модулей памяти может быть произвольным и необязательно кратным степени 2. В некоторых компьютерах допускается произвольное отключение модулей памяти, что позволяет исключать из конфигурации неисправные модули. В современных высокопроизводительных компьютерах число модулей обычно составляет 4 – 16, но иногда превышает 64. Так как схема расслоения по адресам базируется на допущении о локальности, она дает эффект в тех случаях, когда это допущение справедливо, т. е. при решении одной задачи. Для повышения производительности мультипроцессорных систем, работающих в многозадачных режимах, реализуют другие схемы, при которых различные процессоры обращаются к различным модулям памяти Обобщением идеи расслоения памяти является возможность реализации нескольких независимых обращений, когда несколько контроллеров памяти позволяют модулям памяти (или группам расслоенных модулей памяти) работать независимо. Прямое уменьшение числа конфликтов за счет организации чередующихся обращений к различным модулям памяти достигается путем размещения программ и данных в разных модулях. Разделение памяти на память команд и память данных широко используется в системах управления или обработки сигналов. В подобного рода системах в качестве памяти команд нередко используются постоянные запоминающие устройства (ПЗУ), цикл которых меньше цикла устройств, допускающих запись, это делает разделение программ и данных весьма эффективным. Следует отметить, что обращения процессоров ввода-вывода в режиме прямого доступа в память логически реализуются как обращения к памяти данных. Выбор той или иной схемы расслоения для компьютера (системы) определяется целями (достижение высокой производительности при решении множества задач или высокого быстродействия при решении одной задачи), архитектурными и структурными особенностями системы, а также элементной базой (соотношением длительностей циклов памяти и узлов обработки).