Пусть функция непрерывна в ограниченной замкнутой области S и требуется вычислить m-кратный интеграл
. (1)
Геометрически число I представляет собой (m+1)-мерный объём прямого цилиндроида в пространстве , построенного на основании S и ограниченного сверху данной поверхностью , где .
Преобразуем интеграл (1) так, чтобы новая область интегрирования целиком содержалась внутри единичного m-мерного куба. Пусть область S расположена в m-мерном параллелепипеде
. (2)
Сделаем замену переменных . (3)
Тогда, очевидно, m-мерный параллелепипед (2) преобразуется в m-мерный единичный куб (4)
и, следовательно, новая область интегрирования σ, которая находится по обычным правилам, будет целиком расположена внутри этого куба.
Вычисляя якобиан преобразования, будем иметь:
. Таким образом, , (5)
где . Введя обозначения и , запишем интеграл (5) короче в следующем виде: . (5/)
Укажем способ вычисления интеграла (5/) методом случайных испытаний.
Выбираем m равномерно распределённых на отрезке [0, 1] последовательностей случайных чисел:
Точки можно рассматривать как случайные. Выбрав достаточно большое N число точек , проверяем, какие из них принадлежат области σ (первая категория) и какие не принадлежат ей (вторая категория). Пусть
1. при i=1, 2, …, n (6)
2. при i=n+1, n+2, …,N (6/)
(для удобства мы здесь изменяем нумерацию точек).
Заметим, что относительно границы Г области σ следует заранее договориться, причисляются ли граничные точки или часть их к области σ, или не причисляются к ней. В общем случае при гладкой границе Г это не имеет существенного значения; в отдельных случаях нужно решать вопрос с учётом конкретной обстановки.
Взяв достаточно большое число n точек , приближённо можно положить: ; отсюда искомый интеграл выражается формулой , где под σ понимается m-мерный объём области интегрирования σ. Если вычисление объёма σ затруднительно, то можно принять: , отсюда . В частном случае, когда σ есть единичный куб, проверка становится излишней, то есть n=N и мы имеем просто .
Заключение.
Метод Монте-Карло используется очень часто, порой некритично и неэффективным образом. Он имеет некоторые очевидные преимущества:
а) Он не требует никаких предложений о регулярности, за исключением квадратичной интегрируемости . Это может быть полезным, так как часто очень сложная функция, чьи свойства регулярности трудно установить.
б) Он приводит к выполнимой процедуре даже в многомерном случае, когда численное интегрирование неприменимо, например, при числе измерений, большим 10.
в) Его легко применять при малых ограничениях или без предварительного анализа задачи.
Он обладает, однако, некоторыми недостатками, а именно:
а) Границы ошибки не определены точно, но включают некую случайность. Это, однако, более психологическая, чем реальная, трудность.
Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов втузов. – 3-е изд., перераб. И доп. – М.: Высш. школа, 1979г.
Ермаков С. М. Методы Монте-Карло и смежные вопросы. М.: Наука, 1971г.
Севастьянов Б. А. Курс теории вероятностей и математической статистики. – М.:Наука,1982г.
Математика. Большой энциклопедический словарь / Гл. ред. Ю. В. Прохоров. – М.: Большая Российская энциклопедия,1999г.
Гмурман В. Е. Теория вероятностей и математическая статистика. Учеб. пособие для втузов. Изд. 5-е, перераб. и доп. М., «Высш. школа», 1977.