Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

СИСТЕМА ВВОДА/ВЫВОДА(СВВ)



Организация обмена данными между ядром и ПУ возлагается на так называемую систему ввода/вывода (IOS). Система ввода/вывода (СВВ) представляет собой комплекс аппаратных и программных средств.

Аппаратные средства СВВ:

· ПУ;

· контроллеры (адаптеры) ПУ;

· специализированные контроллеры для организации обмена (DMAC – direct memory access controller);

· аппаратные интерфейсы;

· система прерываний (точнее ее аппаратная часть обычно представлена специализированным контроллером PIC).

· Программные средства СВВ:

· супервизор ввода-вывода;

· драйверы ПУ.

 

Под вводом данных обычно понимается их передача из ПУ в основную память. Под выводом данных – передача данных из ОП в ПУ.

 

Основные способы организации ввода/вывода:

· Программно-управляемый ввод-вывод (В/В) (PIO).

Иногда разделяют на синхронный и асинхронный.

· В/В по прерыванию

· В/В в режиме DMA (прямой доступ к памяти).

При использовании первых двух способов все управления В/В организует ЦП. При этом регистры ЦП обычно являются промежуточным звеном при пересылке данных между ОП и ПУ. При использовании третьего способа организацию обмена осуществляет контроллер DMA без участия ЦП. По завершению операции обмена контроллер DMA информирует об этом ЦП через систему прерываний.

Как правило, контроллеры ПУ включает в свой состав:

- регистр данных;

- регистр приказов (регистр команд);

- регистр состояний.

для доступа к ним со стороны ЦП.

 

5. Центральный процессор (ЦП) как основное устройство ЭВМ. Основные функции ЦП как обрабатывающего и управляющего устройства. Состав ЦП. Основные характеристики ЦП.

Основное устройство компьютера – ЦП – выполняет двоякую функцию:

· С одной стороны, ЦП является обрабатывающим устройством, т.к. реализует функции по обработке данных в соответствии с заданной программой.

· С другой стороны ЦП является управляющим устройством в связи с тем, что на него возлагаются функции, во-первых, по управлению программой, и, во-вторых, по управлению устройствами периферийной части компьютера.

Управление периферийными устройствами как правило сводится к обеспечению реакции на запросы устройств и к организации обмена между периферийными устройствами и ядром компьютера.

Основными устройствами (блоками), входящими в состав ЦП, являются:

· ALU(IU-integer unit),

· FPU,

· MMX,

· SSE,

· УУ.

АЛУ реализует функцию ЦУ по обработке и предназначено для выполнения арифметических и логических операций над целыми числами, логическими значениями и символьными данными. В некоторых современных моделях компьютеров это устройство называется IU для того, чтобы подчеркнуть основной тип обрабатываемых данных.

Функцией устройства управления (УУ) является выработка сигналов управления, с помощью которых осуществляется выполнение элементарных операций в АЛУ или периферийных устройствах, которые называются микрооперациями.

УУ, во-первых, обеспечивает выполнение команд программы, реализуя выборку команд из памяти, их декодирование, формирование адресов операндов и их выборку из памяти, настройку АЛУ на выполнение заданной операции и запись результата операции в память. С другой стороны УУ реализует функции по управлению взаимодействия периферийных устройств ЭВМ с его ядром, обеспечивая реакцию на запросы ПУ по организации обмена между ними и памятью (ОП). Для обеспечения быстрой реакции на запросы ПУ в ЦП используется система, представляющая собой комплекс аппаратных и программных средств.

Кроме АЛУ и УУ в состав ЦП входит внутренняя регистровая память. Регистры ЦП обычно разделяют на программно-доступные и программно-недоступные.

Программно-доступные обычно рассматриваются как программная модель процессора. Например, в базовой модели процессора Intel 8086 – 14 16-разрядных

регистров, из них 8-РОН, 4-сегментных, FR – флаговый регистр и IP-указатель команд. Типичными примерами программно-недоступных регистров могут служить:

· IR (РК) - регистр команд (instruction register);

· MAR(РА) – регистр адреса (memory address register);

· MDR (РД) - регистр данных (memory data register).

Последние два регистра входят в состав интерфейса и служат для обмена между ЦП и ОП.

Основные характеристики ЦП:

1. Тактовая частота в некотором смысле характеризует быстродействие ЦП. Быстродействие оценивается числом операций в секунду. Величина обратная тактовой частоте представляет собой длительность одного такта процессора τ = 1/f.

Для RISC процессоров тактовую частоту можно отождествить с пиковой (предельной) производительностью при условии, что в процессоре отсутствуют средства суперскалярной обработки. Это утверждение базируется на свойстве RISC архитектуры: выполнение подавляющего большинства машинных команд за 1 такт процессора. Таким образом, тактовая частота 1ГГц для RISC процессора без средств суперскалярной обработки соответствует производительности 1000 MIPS (Million Instruction Per Second).

В простейшем смысле под суперскалярной обработкой понимается возможность выполнения ЦП более одной машинной команды в каждом такте. Суперскалярность обеспечивается способностью обрабатывающих устройств в ЦП функционировать параллельно, обеспечивая тем самым возможность схода с конвейера команд в каждом такте более одной готовой команды.

Простейшим способом реализации суперскалярной обработки является использование двух параллельных конвейеров команд как, например, в процессоре Intel Pentium.

Все современные универсальные процессоры имеют средства суперскалярной обработки, с учетом этого для преобразования тактовой частоты в производительность в MIPS`ах необходимо ее умножить на коэффициент суперскалярности, определяющий среднее число машинных команд завершающихся в каждом такте процессора.

При оценке пиковой производительности ЦП и в принципе всего компьютера в целом кроме MIPS используется также MFLOPS (Million Floating Point Operation Per Second) и его производные GFLOPS и TFLOPS. Именно оценка производительности во FLOPS`ах является основанием для формирования рейтинга TOP 500 самых высокопроизводительных вычислительных систем.

 

2. Разрядность CPU определяется максимальной разрядностью обрабатываемых в АЛУ данных. Современные модели высокопроизводительных процессоров являются 64-х разрядными. Из процессоров фирмы Intel к таким относится Itanium.

 

3. Мощности системы команд В принципе существует 2 подхода к оценке мощности системы команд. В первом из них мощность определяется количеством уникальных мнемоник на Assembler`е. При втором подходе мощность оценивается числом разнообразных машинных кодов команд с учетом различных кодов команд и режимов адресации. Для примера мощность системы команд базовой модели Intel по числу мнемоник имеет значение 113, а по числу разнообразных машинных кодов ~3800. В дальнейшем будем использовать первый подход к оценке мощности. Именно по этой характеристике осуществляется деление процессоров и соответственно компьютеров на 2 класса: CISC и RISC.

Мощность системы команд в современных CISC процессорах составляет ~350-450, а RISC процессорах ~100-150.

 

6. Классификация архитектур процессоров по способу хранения операндов. Основные особенности архитектур: аккумуляторной, регистровой, с выделенным доступом к памяти, стековой.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.