Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Отображение трехмерных графиков



Программа MatLab обладает рядом инструментов для визуализации графиков в трехмерном пространстве. Такие задачи обычно возникают при отображении графиков функций типа .

В самом простом случае, для визуализации графика в трехмерных координатных осях, используется функция

plot3(X,Y,Z);

которая в качестве первых двух аргументов принимает матрицы с координатами точек по осям Ox и Oy соответственно, а в качестве третьего аргумента передается матрица значений точек по оси Oz. Рассмотрим работу данной функции на примере отображения графика функции

,

при и .

Сформируем матрицы X и Y, содержащие координаты точек данного графика по осям Ox и Oy соответственно. Данные матрицы нужны для того, чтобы функция plot3() «знала» какие реальные координаты соответствуют точке Z(i,j) матрицы значений по оси Oz. Для этого достаточно взять i-ю и j-ю компоненту матриц

Формирование матриц X и Y можно осуществить с помощью функции

[X,Y]=meshgrid(x,y);

языка MatLab. Здесь x и y – одномерные векторы значений координат по осям Ox и Oy соответственно, которые можно сформировать как

x=-1:0.1:1; % координаты точек по оси Ox
y=-2:0.1:2; % координаты точек по оси Oy

и, затем, вычислить матрицы

[X,Y]=meshgrid(x,y); % матрицы координат точек по осям Ox и Oy

В результате, матрицы X и Y будут содержать следующие первые восемь значений по строкам и столбцам:

Матрица X:

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

Матрица Y:

-2 -2 -2 -2 -2 -2 -2 -2

-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9

-1,8 -1,8 -1,8 -1,8 -1,8 -1,8 -1,8 -1,8

-1,7 -1,7 -1,7 -1,7 -1,7 -1,7 -1,7 -1,7

-1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6

-1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5

-1,4 -1,4 -1,4 -1,4 -1,4 -1,4 -1,4 -1,4

-1,3 -1,3 -1,3 -1,3 -1,3 -1,3 -1,3 -1,3

Используя данные матрицы, можно вычислить значения матрицы Z, следующим образом:

Z=exp(-X.^2-Y.^2);

и отобразить результат на экране

plot3(X,Y,Z);

Рис. 3.10. Пример отображения графика с помощью функции plot3()

Из приведенного рисунка видно, что функция plot3() отображает график в виде набора линий, каждая из которых соответствует сечению графика функции вдоль оси Oy.

Такое представление графика не всегда удобно, т.к. набор одномерных не дает полное представление о характере двумерной плоскости. Более лучшей визуализации можно получить, используя функцию

mesh(X,Y,Z); % отображение графика в виде сетки

В результате получим следующий вид трехмерного графика (рис. 3.11).

Благодаря использованию функции mesh() получается график, образованный интерполяцией точек массивов X, Y и Z линиями по осям Ox и Oy. Кроме того, цветом указывается уровень точки по оси Oz: от самого малого значения (синего) до самого большого (красного) и производится удаление «невидимых» линий. Это позволяет лучше визуально оценивать структуру трехмерного графика по сравнению с функцией plot3(). Если же необходимо отобразить «прозрачный» график, то следует выключить режим удаления «невидимых» линий:

hidden off; % скрытые линии рисуются

В системе MatLab предусмотрена функция визуализации непрерывной поверхности в трехмерных осях

surf(X,Y,Z); % отображение непрерывной поверхности

В результате получается график, представленный на рис. 3.12.

Рис. 3.11. Результат работы функции mesh()

Рис. 3.12. Результат работы функции surf()

Функция surf() может использоваться в режиме

shading interp; % интерполяция тени на гранях графика

которая интерполирует цвет на гранях для получения более гладкого изображения поверхности (рис. 3.13). Также существует возможность менять цветовую карту отображения графика с помощью функции

colormap( <карта> ); % установка цветовой карты

Например, карта с именем hot, используемая по умолчанию может быть заменена на любую другую доступную (hot, hsv, gray, pink, cool, bone copper) или созданную самостоятельно.

Рис. 3.13. Результат работы функции surf() в режиме shading interp

Следует отметить, что все три функции plot3(), mesh() и surf() могут быть использованы и с одним аргументом Z, который интерпретируется как матрица со значениями точек по оси Oz.

Для масштабирования отдельных участков трехмерных графиков, также как и в случае с двумерными графиками, используется функция

axis([xmin xmax ymin ymax zmin zmax]);

с очевидным набором параметров.

Для оформления трехмерных графиков можно пользоваться описанными ранее функциями: text, xlabel, ylabel, zlabel, title, grid [on/off], subplot.

Наконец, для трёхмерных графиков существует возможность изменять точку их обзора, т.е. положение виртуальной камеры с помощью функции

view([az el]);

где az – угол азимута; el – угол возвышения. Изменение первого угла означает вращение плоскости xOy вокруг оси Oz против часовой стрелки. Угол возвышения есть угол между направлением на камеру и плоскостью xOy.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.