Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Операции над матрицами и векторами



В системе MatLab достаточно просто выполняются математические операции над матрицами и векторами. Рассмотрим сначала простые операции сложения и умножения матриц и векторов. Пусть даны два вектора

a = [1 2 3 4 5]; % вектор-строка
b = [1; 1; 1; 1; 1]; % вектор-столбец

тогда умножение этих двух векторов можно записать так

c = a*b; % c=1+2+3+4+5=16
d = b*a; % d – матрица 5х5 элементов

В соответствии с операциями над векторами, умножение вектор-строки на вектор-столбец дает число, а умножение вектор-столбца на вектор-строку дает двумерную матрицу, что и является результатом вычислений в приведенном примере, т.е.

Сложение и вычитание двух векторов записывается так

a1 = [1 2 3 4 5];
a2 = [5 4 3 2 1];
c = a1+a2; % c = [1+5, 2+4, 3+3, 4+2, 5+1];
с = a2-a1; % c = [5-1, 4-2, 3-3, 2-4, 1-5];

Следует обратить внимание, что операции сложения и вычитания можно выполнять между двумя векторами-столбцами или двумя векторами-строками. Иначе MatLab выдаст сообщение об ошибке, т.к. разнотипные векторы складывать нельзя. Так обстоит дело со всеми недопустимыми арифметическими операциями: в случае невозможности их вычисления система MatLab сообщит об ошибке и выполнение программы будет завершено на соответствующей строке.

Аналогичным образом выполняются операции умножения и сложения между матрицами:

A = [1 2 3; 4 5 6; 7 8 9];
B = ones(3);
C = A+B; % сложение двух матриц одинакового размера
D = A+5; % сложение матрицы и числа
E = A*B; % умножение матрицы А на В
F = B*A; % умножение матрицы В на А
G = 5*A; % умножение матрицы на число

Операции вычисления обратной матрицы, а также транспонирования матриц и векторов, записываются следующим образом:

a = [1 1 1]; % вектор-строка
b = a’; % вектор-столбец, образованный
% транспонированием вектора-строки а.
A = [1 2 3; 4 5 6; 7 8 9]; % матрица 3х3 элемента
B = a*A; % B = [12 15 18] – вектор-строка
C = A*b; % C = [6; 15; 24] – вектор-столбец
D = a*A*a’; % D = 45 – число, сумма эл-ов матрицы А
E = A’; % E – транспонированная матрица А
F = inv(A); % F – обратная матрица А
G = A^-1; % G – обратная матрица А

Из приведенного примера видно, что операция транспонирования матриц и векторов обозначается символом ‘ (апостроф), который ставится после имени вектора или матрицы. Вычисление обратной матрицы можно делать путем вызова функции inv() или возводя матрицу в степень -1. Результат в обоих случаях будет одинаковым, а два способа вычисления сделано для удобства использования при реализации различных алгоритмов.

Если в процессе вычислений требуется поэлементно умножить, разделить или возвести в степень элементы вектора или матрицы, то для этого используются операторы:

.* - поэлементное умножение;
./ и .\ - поэлементные деления;
.^ - поэлементное возведение в степень.

Рассмотрим работу данных операторов на следующем примере.

a = [1 2 3]; % вектор-строка
b = [3 2 1]; % вектор-строка
c = a.*b; % c = [3 4 3]
A = ones(3); % матрица 3х3, состоящая из единиц
B = [1 2 3;4 5 6; 7 8 9]; % матрица 3х3
C = A.*B; % матрица 3х3, состоящая из
D = A./B; % матрица 3х3, состоящая из
E = A.\B; % матрица 3х3, состоящая из
F = A.^2; % возведение элементов матрицы А в квадрат

В заключении данного параграфа рассмотрим несколько функций полезных при работе с векторами и матрицами.

Для поиска максимального значения элемента вектора используется стандартная функция max(), которая возвращает найденное максимальное значение элемента и его позицию (индекс):

a = [1 6 3 4];
[v, i] = max(a); % v = 6, i = 2;

или

v = max(a); % v = 6;

Приведенный пример показывает два разных способа вызова функции max(). В первом случае определяется и максимальное значение элемента и его индекс в векторе, а во втором – только максимальное значение элемента.

В случае с матрицами, данная функция определяет максимальные значения, стоящие в столбцах, как показано ниже в примере:

A = [4 3 5; 6 7 2; 3 1 8];
[V, I] = max(A); % V=[6 7 8], I = [2 2 3]
V = max(A); % V=[6 7 8]

Полный синтаксис функции max() можно узнать, набрав в командном окне MatLab команду

help <название функции>

Аналогичным образом работает функция min(), которая определяет минимальное значение элемента вектора или матрицы и его индекс.

Другой полезной функцией работы с матрицами и векторами является функция sum(), которая вычисляет сумму значений элементов вектора или столбцов матрицы:

a = [3 5 4 2 1];
s = sum(a); % s = 3+5+4+2+1=15
A = [4 3 5; 6 7 2; 3 1 8];
S1 = sum(A); % S1=[13 11 15]
S2 = sum(sum(A)); % S2=39

При вычислении суммы S2 сначала вычисляется сумма значений элементов матрицы А по столбцам, а затем, по строкам. В результате, переменная S2 содержит сумму значений всех элементов матрицы А.

Для сортировки значений элементов вектора или матрицы по возрастанию или убыванию используется функция sort() следующим образом:

a = [3 5 4 2 1];

b1 = sort(a); % b1=[1 2 3 4 5]
b2 = sort(a, ‘descend’); % b2=[5 4 3 2 1]
b3 = sort(a, ‘ascend’); % b3=[1 2 3 4 5]

для матриц

A = [4 3 5; 6 7 2; 3 1 8];
B1 = sort(A); % B1=[3 1 2
% 4 3 5
% 6 7 8]
B2 = sort(A, ‘descend’); % B2=[6 7 8
% 4 3 5
% 3 1 2]

Во многих практических задачах часто требуется найти определенный элемент в векторе или матрице. Это можно выполнить с помощью стандартной функции find(), которая в качестве аргумента принимает условие, в соответствии с которым и находятся требуемые элементы, например:

a = [3 5 4 2 1];
b1 = find(a == 2); % b1 = 4 – индекс элемента 2
b2 = find(a ~= 2); % b2 = [1 2 3 5] – индексы без 2
b3 = find(a > 3); % b3 = [2 3]

В приведенном примере символ ‘= =’ означает проверку на равенство, а символ ‘~=’ выполняет проверку на неравенство значений элементов вектора а. Более подробно об этих операторах будет описано в разделе условные операторы.

Еще одной полезной функцией работы с векторами и матрицами является функция mean() для вычисления среднего арифметического значения, которая работает следующим образом:

a = [3 5 4 2 1];
m = mean(a); % m = 3
A = [4 3 5; 6 7 2; 3 1 8];
M1 = mean(A); % M1 = [4.333 3.667 5.000]
M2 = mean(mean(A)); % M2 = 4.333

Структуры в MatLab

При разработке программ важным является выбор эффективного способа представления данных. Во многих случаях недостаточно объявить простую переменную или массив, а нужна более гибкая форма представления данных. Таким элементом может быть структура, которая позволяет включать в себя разные типы данных и даже другие структуры. Структуры задаются следующим образом:

S = struct('field1',VALUES1,'field2',VALUES2,...);

где field1 – название первого поля структуры; VALUES1 – переменная первого поля структуры, и т.д.

Приведем пример, в котором использование структуры позволяет эффективно представить данные. Таким примером будет инвентарный перечень книг, в котором для каждой книги необходимо указывать ее наименование, автора и год издания. Причем количество книг может быть разным, но будем полгать, что не более 100. Для хранения информации об одной книге будем использовать структуру, которая задается в MatLab с помощью ключевого слова struct следующим образом:

S = struct('title','','author','','year',0);

В итоге задается структура с тремя полями: title, author и year. Каждое поле имеет свой тип данных и значение.

Для того, чтобы записать в эту структуру конкретные значения используется оператор ‘.’ (точка) для доступа к тому или иному полю структуры:

S.title = 'Евгений Онегин';
S.author = 'Пушкин';
S.year = 2000;

и таким образом, переменная S хранит информацию о выбранной книге.

Однако по условиям задачи необходимо осуществлять запись не по одной, а по 100 книгам. В этом случае целесообразно использовать вектор структур lib, который можно задать следующим образом:

lib(100,1) = struct('title','','author','','year',0);

и записывать информацию о книгах так:

lib(1).title = 'Евгений Онегин';
lib(1).author = 'Пушкин';
lib(1).year = 2000;

Данный пример показывает удобство хранения информации по книгам. Графически массив структур можно представить в виде таблицы, в которой роль столбцов играют поля, а роль строк элементы массива структур (рис. 1.1).

При работе со структурами полезными являются следующие функции:

isstruct( S ) – возвращает истину, если аргумент структура
isfield( S, 'name') – возвращает истину, если имеется такое поле
fieldnames( S ) – возвращает массив строк с именами всех полей

которые позволяют программно определить всю необходимую информацию о той или иной структуре и корректно выполнять обработку ее полей.

  название автор год издания
lib[1] lib[1].title lib[1].author lib[1].year
       
lib[2] lib[2].title lib[2].author lib[2].year
       
lib[3] lib[3].title lib[3].author lib[3].year
     
lib[100] lib[100].title lib[100].author lib[100].year

Рис. 1.1. Графическое представление массива структур хранения информации по 100 книгам

Ячейки в MatLab

Ячейки также как и структуры могут содержать разные типы данных, объединенные одной переменной, но в отличии от вектора структур, вектор ячеек может менять тип данных в каждом элементе. Таким образом, вектор ячеек является универсальным контейнером – его элементы могут содержать любые типы и структуры данных, с которыми работает MatLab – векторы чисел любой размерности, строки, векторы структур и другие (вложенные) векторы ячеек.

Методы создания вектора ячеек похожи на методы создания вектора структур. Как и в случае структур, векторы ячеек могут быть созданы либо путём последовательного присваивания значений отдельным элементам массива, либо созданы целиком при помощи специальной функции cell(). Однако в любом случае важно различать ячейку (элемент вектора ячеек) и её содержимое. Ячейка – это содержимое плюс некоторая оболочка (служебная структура данных) вокруг этого содержимого, позволяющая хранить в ячейке произвольные типы данных любого размера.

Приведем пример создания вектора ячеек хранения разных типов данных.

book = struct('title','Онегин','author','Пушкин','year',2000);
MyCell(1)={book};
MyCell(2)={'Пушкин'};
MyCell(3)={2000};

Здесь задан вектор ячеек MyCell с тремя элементами. Первый элемент соответствует структуре, второй – строке, а третий – числу. В этом и заключается особенность организации данных с помощью ячеек: у каждого элемента свой тип данных.

Для обращения к содержимому той или иной ячейки используются фигурные скобки, внутри которых ставится индекс элемента с которым предполагается работа:

MyCell{1}

выведет на экран

title: 'Евгений Онегин'
author: 'Пушкин'
year: 2000

Если же используются круглые скобки, то будет возвращена структура данных вместо отдельных значений, например

MyCell(1)

выведет

[1x1 struct]

Для того чтобы задать вектор или матрицу ячеек с пустыми (неопределенными) значениями, используется функция cell() как показано ниже.

MyCellArray = cell(2, 2);

задается матрица размером 2х2. Данную инициализацию целесообразно выполнять когда нужно определить большой вектор или матрицу ячеек и в цикле задавать их значения. В этом случае MatLab сразу создает массивы нужных размеров, в результате чего повышается скорость выполнения программ.

В заключении рассмотрим возможность программирования функции с произвольным числом аргументов благодаря использованию ячеек. Для этого в качестве аргумента функции указывается ключевое слово varargin, которое интерпретируется внутри функции как вектор ячеек с переданными аргументами:

function len = SumSquare( varargin )
n= length( varargin );
len = 0;
for k = 1 : n
len = len + varargin{ k }(1)^2 +varargin{ k }(2)^2;
end

Данная функция вычисляет сумму квадратов чисел, которые передаются ей следующим образом:

SumSquare( [ 1 2], [3 4] ) % ответ 30
SumSquare( [ 1 2], [3 4], [ 5 6] ) % ответ 91

Таким образом, благодаря использованию ячеек функции SumSquare() можно передавать произвольное число двумерных векторов.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.