Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Свойства сходящихся числовых последовательностей



ЛЕКЦИИ ПО ДИСЦИПЛИНЕ

«Математический анализ»

для направления 080100 «Экономика»

 

Рязань 2012


Тема 1. Числовая последовательность, ее предел

 

Понятие числовой последовательности.

Свойства числовых последовательностей

Рассмотрим функцию , где .

Определение 1.Функцию, аргументом которой служит натуральное число n, называют числовой последовательностью.

Значения функции называются членами или элементами этой последовательности и обозначаются, как правило,

, так что , ,…, .

Сокращенно последовательность обозначается символом . Геометрически последовательность изображается на координатной прямой в виде последовательности точек, координаты которых равны соответствующим элементам последовательности.

Суммой, разностью, произведением и частным последовательностей и называются соответственно последовательности

, , …, ,…,

, , …, ,…,

, , …, , … .

Символически вышеуказанные действия записываются следующим образом:

, , .

Заметим, что значения членов последовательности не должны быть обязательно различными. Например, если , , , то соответствующие последовательности имеют вид

; ; .

В первом случае имеем просто постоянную величину, во втором члены последовательности принимают два различных значения, в третьем множество значений переменной бесконечно.

Определение 2.Последовательность назовем ограниченной сверху (снизу), если существует такое число ( ), что любой элемент этой последовательности удовлетворяет неравенству ( ).

Последовательность называется ограниченной, если она ограничена и снизу, и сверху, то есть существуют такие числа и , что для любого : . Обозначим . Тогда условие ограниченности можно записать в виде .

Например, последовательность ограничена снизу, но не ограничена сверху;

последовательность ограничена сверху, но не ограничена снизу;

последовательность ограничена, так как любой элемент этой последовательности удовлетворяет неравенству .

 

Предел числовой последовательности, его геометрический смысл.

Свойства сходящихся числовых последовательностей

Определение 1.Число a называется пределом последовательности , если для любого положительного , сколь бы мало оно ни было, существует такой номер , что для всех выполняется неравенство

. (2.1)

Тот факт, что a является пределом последовательности , записывают так:

или . (2.2)

Если предел последовательности существует, то говорят также, что последовательность сходится.

Заметим, что номер N зависит от выбора , то есть .

Используя логические символы, это определение можно записать следующим образом:

.

Если изобразить числа , , и значения точками числовой оси, то получится геометрическая интерпретация предела последовательности (рис).

Какой бы малый промежуток длины с центром в точке a ни взять, все точки , начиная с некоторой из них, должны попасть внутрь этого промежутка. Особый интерес вызывает случай, когда , который рассмотрим позднее.

Рассмотрим некоторые свойства сходящихся последовательностей, сформулировав их в виде теорем.

Теорема 1. Если последовательность имеет предел, равный a, и , то и члены последовательности , начиная с некоторого номера.

■ Пусть и . Подберем число так, чтобы ; для этого достаточно взять . Но тогда по определению предела найдется такой номер N, что для выполняется , а, следовательно, тем более . ■

Теорема 2. Если и , то и , начиная с некоторого номера.

Для доказательства следует применить предыдущее утверждение, выбрав .

Теорема 3. Если последовательность имеет предел, то она ограничена.

■ Так как , то по определению предела последовательности для . Но , следовательно, ; откуда для .

Обозначим . Тогда для всех n , что и означает ограниченность последовательности . ■

Теорема 4. Последовательность не может стремиться одновременно к двум различным пределам.

■ Предположим, что и , причем . Выберем любое число , . Так как и , то существует такой номер , что для (на основании теоремы 1). С другой стороны, так как и , то существует такой номер , что для . Тогда для N, большего и , одновременно и больше c и меньше c. Полученное противоречие доказывает утверждение. ■

3. Бесконечно малые и бесконечно большие последовательности

Определение 1.Последовательность называется бесконечно малой, если .

Если в определении 1 положить , то неравенство (2.1) примет вид . Следовательно, определение бесконечно малой последовательности может быть сформулировано следующим образом.

Определение 2.Последовательность называется бесконечно малой, если для любого сколь угодно малого существует такой номер N, что для .

( – бесконечно малая )

Пример 1. Последовательность является бесконечно малой.

В самом деле, лишь только . Следовательно, в качестве можно взять целую часть числа . Заметим, что ни одно отдельно взятое значение бесконечно малой последовательности (если оно не нуль) не может рассматриваться как «малое». Дело в том, что это переменная величина, которая лишь в процессе своего изменения способна сделаться меньшей произвольно выбранного числа .

Вернемся к общему случаю существования предела последовательности.

Если , то разность будет бесконечно малой, так как в силу (1) при .

Обратно, если – бесконечно малая, то . Эти рассуждения приводят к следующему утверждению.

Теорема 1. Для того, чтобы последовательность имела своим пределом число a, необходимо и достаточно, чтобы последовательность была бесконечно малой.

Итак, если , то , где – бесконечно малая, и обратно, если , то .

Бесконечно малым последовательностям противопоставляются в некотором смысле бесконечно большие последовательности.

Определение 3.Последовательность называется бесконечно большой, если для любого сколь угодно большого числа существует такой номер , что для всех номеров .

Как и в случае бесконечно малых, следует заметить, что ни одно отдельно взятое значение бесконечно большой не может рассматриваться как «большое». Это переменная величина, которая лишь в процессе своего изменения способна сделаться большей произвольно взятого числа M.

Пример 2. Последовательность является бесконечно большой, так как , лишь только . Следовательно, в качестве можно взять целую часть числа .

Если последовательность бесконечно большая, то говорят также, что она имеет предел или стремится к и записывают

( ).

Если при этом бесконечно большая сохраняет определенный знак, то в соответствии со знаком говорят, что или ( либо ).

( .)

Существует связь между бесконечно большими и бесконечно малыми последовательностями, которая устанавливается теоремой 6.

Теорема 2.

1) Если – бесконечно большая, то – бесконечно малая последовательность;

2) если ( ) – бесконечно малая, то – бесконечно большая последовательность.

■ Выберем любое число . Так как , то для числа найдется такой номер N, что , как только . Тогда для тех же значений , что и доказывает утверждение. Аналогично доказывается и вторая часть утверждения. ■

Символически утверждение теоремы запишем так:

, .

Пример 3. – бесконечно малая последовательность, а – бесконечно большая.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.