Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Регулирование подачи при совместной работе насосов



 

В разделе 1.1 рассмотрены принципы построения суммарной характеристики двух насосов при их параллельном и последовательном соединении. На Рис.23 показана трансформация рабочей точки при совместной работе насосов.

Анализ Рис.23 показывает, что параллельное соединение насосов более выгодно при пологой характеристике сети, а последовательное - при крутой характеристике сети (в первом случае при этом получается максимально возможный расход, а во втором случае максимально возможный напор насосной установки).

 


 

Иллюстрация определения рабочей точки при

совместной работе двух насосов

 

 

1 - характеристика одного насоса; 2 - суммарная характеристика двух насосов, соединенных последовательно ; 3 - суммарная характеристика двух насосов, соединенных параллельно ; 4 - характеристика гидравлической сети ; К, К1, К2 - соответствующие рабочие точки насосной установки.

Рис.23.

 


 

Глава 3
Расчет всасывающей линии насосной установки

 

В большинстве практических случаев жидкость поступает в насос из резервуара, расположенного ниже оси установки насоса.

К расчету всасывающей линии

Рис.24

Запишем уравнение Бернулли для сечений 1-1 и 2-2 относительно плоскости сравнения 0-0, преобразуем его в соответствии с данной задачей и определим давление на входе в насос:

    (49)

z1 =0; p1 =pат ; J1 »0; J2 =Q/wтр ; z2 =hвс; wтр=pd2/4;

  (50)

Анализ уравнения (50) показывает, что абсолютное давление на входе в насос меньше атмосферного, и при некоторых значениях параметров Q, hвс и d его величина может стать равной нулю и даже принимает отрицательное значение. Возможны ли такие ситуации в реальной жизни? Нет!

Минимально возможное давление в жидкости равно давлению насыщенного пара, то есть тому давлению, при котором жидкость начинает кипеть. Давление насыщенного пара зависит от рода жидкости и температуры (Рис.25, Приложение 3).

 

Зависимость давления насыщенного пара воды от температуры

t,°C
pн.п, Па

Рис.25.

Явление кипения жидкости при давлениях меньших атмосферного и нормальных температурах (10°, 20°,30°,.....),сопровождающееся схлопыванием пузырьков пара в областях повышенного давления, называется кавитацией.

Пузырьки пара, выделяющиеся при кавитации, разрывают межмолекулярные связи, поток жидкости при этом теряет сплошность, столб жидкости во всасывающем трубопроводе отрывается от насоса и процесс всасывания прекращается. Кроме того, пузырьки пара, попадая вместе с жидкостью внутрь насоса, где давление больше давления насыщенного пара, лопаются. При схлопывании пузырька на твердой поверхности жидкость, устремившаяся в освободившееся пространство, останавливается. При этом ее кинетическая энергия превращается в потенциальную и происходят местные гидравлические удары. Это явление сопровождается существенным ростом давления и температуры и приводит к разрушению материала поверхности.

В инженерной практике существует правило: Не допускать кавитации!

Для этого необходимо, чтобы в сечениях потока, где давление меньше атмосферного, было выдержано условие:

Давление в жидкости больше давления насыщенного пара (р > pн.п). Это условие отсутствия кавитации.

Кавитационные расчеты всасывающей линии насосной установки заключаются в следующем:

1. Проверка условия р2 > pн.п. - давление на входе в насос р2 определяется из уравнения (50) при известных параметрах Q, d, hвс.

2. Определение предельных значений параметров Q, d, hвс из уравнения (50) при р2 = pн.п..

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.