Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Химическая пластичность



Ряд экспериментов прямо указывает на участие глии в механизме памяти. Одним из веществ, обеспечивающим взаимодействие между глией и нейронами, оказалась рибонуклеиновая кислота (РНК — химическое вещество, определяющее конфигурацию-протеинов), которая сама является производной дезоксирибонуклеиновой кислоты (ДНК), молекулы генетической памяти. Фактически эти исследования показали, что при стимуляции нейронов вырабатывается больше РНК, чем в любой другой ткани тела (Hyden, 1961). После прекращения стимуляции и уменьшения выработки РНК в нейроне большие концентрации молекулярно сходной РНК начинают появляться в находящейся по соседству глии (Hyden, 1969).

Эти эксперименты, проведенные на мозге кроликов и крыс, были усовершенствованы введением выполняемой под микроскопом процедуры отделения глии от нейронов в вестибулярном ядре — группе нейронов, контролирующей поддержание равновесия животного. Стимуляция этого механизма «равновесия» первоначально осуществлялась следующим образом: животное помещалось в центрифугу и вращалось в ней. В более поздних экспериментах от крыс требовалось, чтобы они карабкались по наклонно натянутой проволоке. При успехе они достигали платформы с едой, при неудаче падали на расположенную внизу клетки решетку, по которой пропускался слабый электрический ток. На различных стадиях эксперимента микрохимическими методами определялась концентрация РНК в вестибулярных нейронах и глии животных. Во время пассивного вращения в центрифуге общее количество РНК в нейронах увеличивалось; увеличение содержания РНК было обнаружено и в течение нескольких часов после вращения. Активное карабканье по проволоке не только увеличивало общее количество РНК, но и изменяло соотношение фракций РНК, которые могли быть идентифицированы по боковым цепочкам, характерных для этих молекул (см. Рис. II—10).

Pис. II—10. Установка эксперимента с крысой, взбирающейся по проволоке, чтобы достать пищу (Нуden, 1965).

По-видимому, никто не сомневается в том, что при физиологической стимуляции нервов или во время выполнения какого-то задания начинается выработка РНК. Однако дело обстоит не так уж просто. Спустя 24—48 часов после прекращения стимуляции изменение концентрации РНК и ее структуры более не отмечается ни в нейронах, ни в глии. Было высказано предположение, что РНК играет роль посредника между ДНК и протеинами, которые создают основу для более постоянной записи возбуждений. Тем не менее определение РНК полезно как указание на активный характер процесса памяти.

Этот взгляд на функцию РНК предполагает, что сохранение следа происходит в других макромолекулах, таких, как полипептиды, протеины, липопротеины и мукоиды (см. Bogoch, 1968; Glassman, 1967). Все эти молекулы имеют сложное строение и синтезируются в результате многих метаболических реакций. Следовательно, можно провести эксперименты, в которых тормозящие обмен вещества действовали бы на то или другое звено цепи синтеза. Эти вещества можно вводить как до и во время, так и после тренировки крыс. С помощью этой техники было обнаружено, например, что вещество, которое препятствует синтезу протеинов, может нарушать процесс припоминания, если лнъекция сделана спустя 5 или 6 часов после того, как крыса приобрела опыт в выполнении задания. Это означает, что эти вещества вызвали блокаду синтеза протеинов. Однако позднее было показано, что, если сохранение следов проверяется через несколько недель после инъекции, припоминание задания ухудшается лишь незначительно. Инъекция этих веществ, по-видимому, нарушает не конструкцию молекулы памяти, а, скорее, препятствует процессу обращения к ней (Agranoff, Davis and Brink, 1965). Однако роль протеинов и других макромолекул (особенно липидов мозга) в механизме памяти, возможно, не столь ограниченна, как это предполагается гипотезой, проверяемой экспериментами с введением веществ, тормозящих обмен. В силу своей сложности макромолекулы имеют уникальные конфигурации, — структуры, которые могут меняться на короткое время и вызывать другое состояние (см. Рис. II—11).

Pис. II—11. Схема возможных конфигураций молекулярных структур, которые может принимать молекула нуклеиновой кислоты (полимер poly-L-lysine hydrochlorid) (Blout, 1967).

С помощью структурных изменений можно хорошо объяснить временную память, связанную с такими образами, которые характерны для лиц с «фотографической» (или «эйдетической») памятью. Один такой эйдетически одаренный студент недавно был обнаружен в Гарварде. В результате экспериментальной проверки было показано, что он способен сохранять в памяти каждую деталь своих зрительных восприятий в течение 8 дней. Вторая часть книги будет в значительной мере посвящена рассмотрению этой временной спирализации молекул. Изучение структурных изменений мозговой ткани сейчас едва ли возможно, однако техника развивается такими темпами, что эта область исследования многое обещает уже в ближайшем будущем (Sjostrand, 1969).

Некоторые исследователи продолжают придерживаться гипотезы, что РНК является непосредственным хранилищем памяти, несмотря на серьезные доводы против этой гипотезы. Они основывают свою точку зрения яа весьма спорных экспериментах с «переносом», которые были проведены на планариях, крысах и обезьянах. В этих экспериментах экстракт РНК от контрольных животных и животных, обучавшихся выполнению задания, вводили необученным животным. Те из них, которым вводили РНК от животных, имевших опыт обучения, иногда, но не всегда решали задачи быстрее по сравнению с теми, которым вводили РНК от контрольных животных. Согласно некоторым данным, эффект различного действия РНК «обученного» и «контрольного» животного исчезал в результате обработки экстракта РНК веществом, избирательно разрушающим РНК (см. обзор McGonnell, 1970).

Сторонники химической гипотезы сохранения следов, оказавшись перед необходимостью выбора между двумя возможными решениями, в конце концов остановились на нейронных медиаторах. Уменьшение скорости и амплитуды нервных импульсов, когда они достигают окончаний аксонов, возникает из-за заметного уменьшения диаметра окончаний волокон. Следовательно, пресинаптических потенциалов самих по себе еще далеко не достаточно, чтобы вызвать постсинаптический потенциал. Однако пресинаптического электрического заряда достаточно, чтобы дать толчок высвобождению медиатора, который хранится на окончании аксона в маленьких пузырьках (см. Рис. II—12).

Pис. II—12. Типичная клетка коры. Обычная форма синапса в мозгу млекопитающих. Аксонная (пресинаптическая) сторона вверху; дендритная (постсинаптическая) сторона — внизу, g — рлия; if — внутрисинаптические волоконца; mi — митохондрия, sc — синаптическая щь; ssw — субсинаптическая паутина; sv — синаптические пузырьки; v — везикулярное тело (Calvin. 1967, см. Roberts, 1S62).

Память могла бы зависеть от легкости, с которой высвобождается медиатор, или от его количества. Таким образом, можно провести такие эксперименты — и они действительно проводятся, — когда медиатор нейтрализуется в результате действия фармакологических веществ или его разрушение блокируется во время тренировки животного (Deutsch, Hamburg and Dahl, 1966). В результате таких действий у крыс нарушается процесс научения, но, как и в исследованиях с применением веществ, тормозящих обмен, возникает вопрос, не вызывает ли введение фармакологических веществ побочных эффектов, меняющих деятельность мозга и, следовательно, влияющих на процесс запоминания, — таких побочных эффектов, как появление локальных электрических разрядов в частях мозга, не связанных непосредственно с сохранением следов памяти, как таковой, но препятствующих обращению к ней во время проверки результатов научения.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.