Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Переваривание и всасывание жиров



Липиды, поступающие из кишечника во внутреннюю среду организма обычно называют экзогенными липидами Процесс расщепления пищевых жиров идет в основном в тонком кишечнике, правда в пшгорическом отделе желудка выделяется липаза рН желудочного сока на высоте пищеварения составляет 1,25 и при этих значениях рН фермент практически неактивен Желудочная липаза работает только у ребенка, поскольку рН желудочного сока ребенка составляет величины порядка 4-5 Принято считать что образующиеся в пилорическом отделе желудка жирные кислоты и моноглицериды далее участвуют в эмульгировании жиров в 12 перегной кишке В желудке под обработка облегчает расщепление липидов этих липопротеидов в тонком кишечнике. Поступающие в тонкий кишечниклипидыподвер гаютс я действию ряда ферментов Прежде всего пищевые триацилглицерины подвергаются действию фермента липазы поступающей из панкреатической железы Эта липаза наиболее активно гидролизует сложноэфирные связи в 1-ом и 3 м положении Менее эффективно она гидролизует сложноэфирные связи между ацилом и 2-м атомом углерода глицерола. Для проявления максимальной активности колипаза - это полипептид поступающий в 12перстную кишку с соком панкреатической железы В расщеплении жиров принимает вторая липаза выделяемая стенками кишечника Эта липаза малоактивна в отличии от панкреатической и преимущественно катализирует гидролиз сложноэфирной связи между ацилом и 2 м атомом углерода глнцерола, т е гидролизует июжноэфирную связь которая расщепляется слабо панкреатической липазой При расщеплении жиров под действием этих двух липаз образуются преимущественно свободные жирные кислоты, моноацнлглиперины и ппшерол. С пищей так же поступают сложные эфиры холистерина, они расщепляются в тонком кишечнике гидролитическим путем при участии фермента холистеролэстеразы (холистераза) до свободных жирных кислот и холистерола Холистеролзтераза содержится и в соке поджелудочной железы и в кишечном соке, т е работают два типа холистеролэтераз кишечная и панкреатическая. Все ферменты принимают участие вгидролизепищевых липидов, могут они действовать только намолекулы

липидов на ранице раздела липид-вода достигается за счет змудьгирования пищевых липидов, т е это разделение крупных липидных капель на более мелкие Для змульгирования необходимы поверхностно активные вещества При взаимодействии пипидных капель с поверхностно активными веществами снижвется величина поверхностного натяжения на границе раздела липид-вода Крупные липндные капли распадаются на мелкие с образованием эмульсий

В качестве активно поверхностных веществ в тонком кишечнике выступают соли жирных кислот (мыла) а так же продукты неполного гидрошза триацилглицериное и фосфояшшдов Однако основную роль в этомпроцессе играют желчние кислоты Желчные кислоты синтезируются в печени из холистерола и поступают в кишечник вместе с желчью Различают первичные и вторичные желчные кислоты Все желчные кислоты это производные холановой кислоты Всасывание продуктовперевариван иялип нлов. В стенку кишечника легко всасываются вешества хогхшо шствооимые в воле Из продуктов пасщегшения липидрв к ним относятся такие как глицерол, аминоспирты, жирные кислоты с количеством углеродных атомов не более 10 а так же натриевые со ш фосфорной кис юты Эти соединения из клеток кишечника обычно поступают непосредственно в кровь и с током крови транспортируются в печень В то же время большинство продуктов переваривания липидов - это высшие жирные кислоты, моно- и диаципдглицерины, лизофосфолипиды, холистерол и др плоло растворимы в воде и для всасывания ил в стенку кишечника требуется специальный механизм Перечисленные соединения наряду с желчными кислотами и фосфолнпидами образуют мицеллу. Мицела состоит из гидрофобного ядра и внешнего мономолекулярного слоя амфифильных соединений. Эти амфифильные соединения расположены таким образом, что гидрофильные их части контактируют с водой, т е направлены кнаружи, а гидрофобные участки ориентированы во внутрь мицелы где контактируют с гидрофобным ядром В состав наружной оболочки мицелы входят преимущественно фосфолипиды и желчные кислоты сюда же может входит и холистерол, поскольку это спирт Гидрофобное ядро мицелы состоит из высших жирных кислот, продуктов неполного расщепления жиров эфиров холестерина, жирорастворимых витаминов Благодаря растворимости мицел эти продукты всасываются путем эндоцитоза В норме v нас всасывается до 98% пищевых липидов 2° о выбрасываются Что происходит с мнцедами в энтероцитах? Поступившие в энтероциты мицеллы немедленно разрушаются, всосавшиеся продукты расщепления превращаются в энтероцитах в липиды характерные для человека Высвободившиеся при распаде мицелы желчные кислоты поступают обратно в кишечник или же постегают в кровь и через воротную вену оказываются в печени, здесь они улавливаются гепатоцитами и направляются в желчь для повторного использования Это так называемая энтерогеппическля циркуляция желчных кислот.

63.Триацилглицериды. Жирные кислоты.

Жирные кислоты - это алифатические карбоновые кислоты число атомов в которых может достигать 22 24 Основная масса жирных кислот входящих в организм человека и животных имеет четное число атомов углерода что связано с особенностями их синтеза Дело в том, что синтез идет путем тотарного удлинения углеродной цепочки Жирные кислоты как правило имеют неразветвленную углеводородную цепь Ониподрюоеляются на насыщенные жирные кислоты - не имеющие в своей структуре двойных связей И ненасыщенные жирные кислоты имеющие в своей структуре двойные или даже тройные С - С связи (тройные встречаются крайне редко) Ненасыщенные жирные кислоты в свою очередь деются на

а) моноеновыете содержащие одну двойную связь

б) полиеновые, содержащие много двойных связей (диеновые, триеновые и др)

Все природные ненасыщенные жирные кислоты имеют стереохимическую цис- конфигурацию так называемая цнс-ол-изомерия.

Природные ненасыщенные жирные кислоты обычно имеют тривиальное название, например алеиновая, линоливая, линоленовая арахидоновая Однако иногда пользуются систематическими названиями, которые отражают особенности структуры каждого соединения например олеиновая кислота называется цис-9-октодеценовой, из этого следует, что данная кислота имеет 18 атомов углерода (октодецен) она содержит одну двойную связь начинающуюся от 9-го атома углеродной цепи и имеет "цис" конфигурацию относительно этой двойной связи. Арахидоновая кислота по систематическому названию - цис-5,8,11,14,-эйкоз аттет роеновая кислота. Откуда такое мудреное название? От слова эйкозан Углеводородный эйкозан содержит 20 атомов углерода.

Триацилглицерины.составляют основную массу резервных липидов человеческого организма Содержание прочих ацилглицеринов в клетках крайне незначительно, в основном они присутствуют в качестве промежуточных продуктов распада или синтеза триацилглицеринов

Триаиилглииееины выполняют резервную функцию. Причем это преимущественно энергетический резерв организма Если мы говорили, что гликоген - это резерв энергетического и пластического материала, то триацилглицершш - это преимущественно энергетический резерв У человека массой 70 кг на долю резервных липидов приходится примерно И кг Учитывая калорический коэфицент (для липидов равный 9,3 ккал) общий запас энергии в резервных тригаицеридах у нас 100000 ккал Для сравнения запас энергии в гликогене в печени не превышает 800 ккал

функция резервных триглицеридов как запаса пластического материала не столь очевидна но все же продукты расщепления триглицеридов или триацилглицеринов как их называют могут использоваться для синтезов Например глицерол, входящий в структуру триацилглицеринов, может использоваться для синтеза глюкозы или некоторых аминокислот

2) Являясь одним из основных компонентов жировой ткани, триацилглицерины участвуют в лгщитг внутренних органов человека от механических повреждений

3) Участвуют в терморегуляции, образуя теплоизолирующую прослойку.

СТЕРИДЫ И СТЕРИНЫ

Стернды представляют весьма важную группу соединений липоидного характера В отличие от фосфатидов они являются сложными эфирами жирных кислот и стеринов

С теряны— это циклические спирты, производные циклопентанопергидро фенан трена

Циклопентанопергидро фенан трен можно рассматривать как продует конденсации циклопентана и полностью гидрированного фенантрена (пергидрофенантрена)

Стерины широко распространены в растительном и животном мире В бактериях их обычно обнаружить не удается Стерины находятся в биологических объектах либо в свободном виде, либо в виде сложных эфиров с

жирными кислотами. Только 10% всех стеринов человеческого организма находятся в виде эфиров. Однако в

некоторых органах, например в печени, почти половина стеринов присутствует в форме сложных эфиров Стерины коровьего масла сала, а также стерины присутствующие в эритроцитах и желчи человека, находятся целиком в свободном состоянии

Холестерин.Изотдельных стеринов наибольший интерес для медиков представляют холестерин-

вторичный циклический спирт и его сложные эфиры — х о лестерид ы.

ОБмен холистерола.

Суточная потребность человека в холистероле составляет около 1 гр Причем вся потребность в этом соединении может удовлетворяться с помощью эндогенного синтеза Пищевой холистерол так же эффективно усваивается человеком > здорового человека поступление холистерола с пищей и его эндогенный синтез хорошо сбалансирован Так например поступление с пищей в течении суток 2-3 гр холистерола полностью блокирует его эндогенный синтез

Основным органом, в котором идет синтез холистерола является печень. В печени человека синтезируется от 50 до

80% эндогенного холистерола, 10-15% синтезируется в клетках тонкого кишечника и около 5% образуется в коже остальное в других органах и тканях Т е объем синтеза в других органах и тканях не названных (дентине, цементе) вообще незначителен, хотя ферментная система обеспечивающая синтез этого соединения присутствует практически во всех органах и тканях

В условиях обычного пищевого рациона во внутреннюю среду организма поступает около 300 мг экзогенного

Общее содержание холистерола в организме человека составляет примерно 140гр Основная масса этого соединения включена в состав клеточных мембран, однако около 10гр холистерола постоянно содержится в плазме крови, входя в состав липопротеидов Концентрация холистерола в норме составляет 3,5-6,8 млмоль/л Причем примерно всего 2/3 холистерола плазмы крови представлена в ней в виде сложных эфиров холистерина с жирными кислотами т е стероиды Жирные кислоты связанные с холистерином это преимущественно лгаюливая и олеиновая Избыток холистерола в клетках запасается в виде эфиров олеиновой кислоты, в то же время в состав мембран входит только свободный хотистерол.

Биологическая роль холестерола.

Холистерол используется в организме прежде всего

1 для синтеза желчных кислот в печени 2 из него синтезируются все стероидные гормоны 3 в коже из него образуется ^-дегидрохолистерин, который под действием УФ превращается в витамин D.

Обмен холестерола.

Суточная потребность человека в холистероле составляет около 1 гр Причем вся потребность в этом соединении может удовлетворяться с помощью эндогенного синтеза Пищевой холистерол так же эффективно усваивается человеком V здорового человека поступление \одистерола с пищей и его эндогенный синтез хорошо сбалансирован Так например поступление с пищей в течении суток 2-3 гр холистерола полностью блокирует его эндогенный синтез

Основным органом в котором идет синтез холистерола является в печень.В печени человека синтезируется от 50 до 80% эндогенного холистерола, 10-15% синтезируется в клетках тонкого кишечника и около 5% образуется в коже, остальное в других органах и тканях Т е объем синтеза в других органах и тканях не названных (дентине, цементе) вообще незначителен, хотя ферментная системаобеспечивающая синтез этого соединения присутствует практически во всех органах и тканях. В условиях обычного пищевого рационавовнутреннюю среду организма поступает около 300 мг экзогенного хопистерола 500 - 700 мг холистерола организм обычно при смешанной диете получает за счет эндогенного синтеза. Общее содержание холестерола в организме человека примерно 140 гр. Основная масса этого соединения включена в составклеточныхмембр ан, однако около 10гр холистерола постоянно содержится в плазме крови, входя в состав липопротеидов Концентрация холистерола в норме составляет 3,5-6,8 млмоль/л Причем примерно всего 2/3 холистерола плазмы крови представлена в ней в виде сложных эфиров холистерина с жирными кислотами те стероиды. Жирные кислоты связанные с холистерином это преимущественно линоливая и олеиновая Избыток холистерола в клетках запасается в виде эфиров олеиновой кислоты, в то же время в состав мембран входит только свободный холистерол

Биологическая роль холистерола.Холистерол используется в организме прежде всего 1 для синтеза желчных кислот в печени 2 из на о синтезируются все стероидные гормоны 3 в коже из него образуется "'-дегидрохолис терин , который под действием УФ превращается в витамин D Как выводится холистерол?Избыток холистерола выводится из организма желчью. Последнее время доказано, что часть избыточного холнстерина может поступать в просвет кишечника непосредственно через его стенки Таким образом холистериновый гамеостаз в организме является результатом динамического равновесия во-первых процессов его поступления в организме эндогенного синтеза, и во-вторых процесов использования холистерола для нужд клеток и его выведение из организма Как синтезируется холистерол?Он синтезируется в клетках из двух углеродных группировок ацетилКоА Процесс синтеза включает в себя Зэ последовательных реакций и может быть разбит на 4-5 этапов

1 этап - образование из ацетилКоА мевалоновой кислоты

2 этап - -образование из меваяоновой кислоты активированных 5 углеродных группировок, гаопреноидные группировки(это изопентилпирофосфат, диметилаланиллипофос фат - активные изопеноидные группировки) 3 этап - конденсация изопреноидных группировок с образованием сквапена 4 этап - циклизация сквапена в ланоетерин 5 этап - преобразование ланостерина в холнстерол В ходе 1-й реакции которую катализирует ацетилКоА-адетилтран сфера за образуется ацетоацетилКоА Затем используется еще одна молекула ацетилКоА и в итоге образуется б-ти углеродная молекула (Зметилр-гидроксиглу тарил КоА, фермент - р-гндрокир метлглюторилКоА-синт аза (ГМГ-синтетаза) Следующая реакция наиболее важная реакция этого синтеза, на которую направлены сегодня все ингибиторы синтеза холистерола (фермент является ключевым ферментом синтеза холистерола-ГМГ-реду ктаза ) Происходит восстановление до спиртовой группы и образуется соединение которое носит название мевалоновая кислота (монокарбоновая)

На втором этапе мевалоновая кислота в результате ряда последовательных превращений преобраз>ется в изопреноидные группировки. на 3 этапе из активных изопреноидных единиц путем последовательных реакций конденсаций образ> ется сквален, имеющий в своем составе 30 атомов углерода (т е используется по крайней мере 6 изопреноидных группировок) На 4 этапе идет циклизация сквалена в соединение стероидной природы - ланоетерин, имеющий в своем составе, так же30 углеродных атомов. Следует отметить, что некоторые промежуточные продукты этого синтеза используются для синтеза других соединений, в частности коэнзимаО (источник энергии д/ja переноса электроновипротонов т е •это компонент главной дыхательной цепи митохондрий) дошхомЬос&ат (принимает участие в синтезе гетероо'шгосахаридны х компонентов в составе гликопротеидов) Ключевая рюль в регуляции синтеза холистерола в клетках принадлежит ферменту ГМГ-КоАредуктазе

При повышении содержания хояистерола в клетках,Внезависимос ти от того синтезирован он здесь в клетках или поступил из внепроисходит снижение активности этого фермента, причем установлено что в данном случае речь идет не о прямом влиянии холистерола на активность фермента, а в основе ингибирующего действия лежат другие механизмы.

70. Жирные кислоты. превращение их в тканях.

Высшие жирные кислоты могут окислятся в тканях тремя способами 1) а-окисление 2) р-окисление 3) w-окисление Процессы а-иw-окисления идут в мшсросомах с участием ферментов монооксигеназ. Они играют в основном пластическую функцию В ходе этих процессов вдет синтез гидроксикислот, кетокислот и кислот с нечетным количеством углеродных атомов, которые затем включаются в тригшщериды Первая реакция монооксигеназная, т е реакция гидроксилирования с образованием гидроксикислот и образование жирных кислот с нечетным числом атомов путем декарбоксипирования -окисление высших жирных кислот является основным способом окисления высших жирных кислот в тканях Было открыто в 1924 году

_р-окнсление - процесс многоступенчатого окислительного расщепления высших жирных кислот в ходе которого происходит последовательное отщепление 2 углеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной высшей жирной кислоты

Активация Поступающие в клетку высшие жирные кислоты подвергаются активации с участием фермента ацилКоА-синтетазы и они превращаются ацилКоА, причем активация происходит в цитозоле в то время как сам процесс р-окисления идет в матриксе митохондрий В то же время мембрана митохондрий непроницаема для ацилКоА Механизм транспорта? Оказывается ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика – карнитин В цитозоле с помощью фермента так называемой внешней ацилКоА-карнитинацил транс феразы переносится остаток высшей жирной кислоты в КоА на карнитин Далее аципкарнитин при участии специальной транслокаэной системы проходит через мембрану внутрь митохондрий и в матрнксе с помощью внутренней аципКоА-карнитикация транс феразы остаток ацила переносится на КоА т е образуется в митохондриях ацилКоА, карнитин высвобождается Высвобожденный карнитин с помощью той же транслоказы переносится в цитозоль, где может включаться в новый цикл переноса Таким образом транслоказа, осуществляющая перенос молекулы ацитилхарнитина внутрь мембраны, обменивает на молекулу карнитина удаляемую из митохондрий. Далее активированная жирная кислота или ацилКоА подвергается ступенчатому циклическому окислению В результате одного цикла р-окисления радикал жирной кислоты укорачивается на 2 углеродных атома, а отщепившийся фрагмент выделяется в виде ацетилКоА Суммарное уравнение

Ацетил-КоА + ФАД + Н2О + НКоА -> О--СН2(СН2)n-1-С - SКоА + ФАДН2 + НАДН + Н.

Парциальные реакции одного цикла (3-окисления в ходе которого активированная жирная кислота укорачивается на 2 углеродных атома (например вступала стеариновая кислота, выходит пальметаилКоА и отщепляется ацетилКоА) Пеовая реакция катализируется ФАЛ зависимой аиилКоАдегшнюгиназой . т е это типичная оеакиия окисления путем дегидрирования В итоге образующиеся соединение носит название енонлКоА (дегидроацилКоА) Окислятся он не может без предварительного присоединения воды ледующая реакция - это реакция гидротации причем вода присоединяется по месту разрыва двойной связи, катализирует эту реакцию еноилКоАгидротаза Образующееся соединение носит название р-оксиацидКоА р-оксиацилКоА вновь подвергается окислению (НАД зависимая дегидрогииаза) Энергия окисления переходит в НАДН+Н* Образующиеся соединение носит название р-кетоацилКоА (в |3 положении кето группа) Далее следует тиалазная реакция (тиолиз - расщепление с присоединением серы, обычно это разрушение с участием КоА) Происходит связи в итоге образуется укороченный КоА на 2 углеродных атома и ацетилКоА (2-х углеродный активный ацетат) Особенности окисления жирных кислот с енчетным количеством углеродных атомов и непредельных жирных кислот. Окислительный распад жирных кислот с нечетным числом атомов углерода так же идет путем р-окисления, но на заключительном этапе распада образуется 3-х углеродный пропионилКоА (производные пропановой кислоты) Он не может дальше окисляться путем р-окисления, необходимо соединение с минимум 4-мя атомами углерода Он не может окисляться в цикле Кребса поскольку в цикл поступают 2-ч углеродные остатки ацетила Оказывается в клетках существует специальный путь окисления пропионилКоА в ходе которого и происходит его окисление Первоначально происходит реакция харбоксилирования пропионилКоА Эта реакция катализируется ферментом пропионилКоА-карбокс илазо й содержащей биотин (vit H) В итоге образуетсясоединение котор ое носят название - метяпмапонклКоА Далее следует мутазная реакция е ходе которой метилмалонат (фермент-метилмалошш мутаз а) превращается в янтарную кислоту Далее в цикл Кребса Причем выяснилось что в состав метилмалонилмутазы входит vit В12, поэтому при недостатке или отсутствии этого витамина с мочой начинается выделятся пропиокат и металмалонат Определение этих соединений представляет собой ценный тест для диагностики В12 дефицитных состояний к карбоксильному концу жирной кислоты и в результате нескольких циклов р-окисления образуется еноилКоА но он а)двойная связь находите* межау Зи4 атомами углерода б) эта связь имеет цис конфигурацию Однако в клетках есть фермент из класса юомераз который переводит двойную связь из положения 3-4 в положение 2-3 и изменяет цис конфигурацию на транс конфигурацию За счет действия этой дополнительной изомеразы стериохимические затруднения, возникающие, преодолеваются.

Ацетил КоА

В кишечной стенки всосавшиеся ацилгицерины распадаются под действием тканевых липаз с образованием свободных жирных кислот и глицерола Часть моноацилглицеринов может превращаться в триащгаглицерины без предварительного расшепления йо так называемый моноацклглицериновый путь ресинтеза Все высшие жирные кислоты всосавшиеся к, кишечника используются в энтероцитах для ресинтеза различных лилидов Но перед тем как: вклю иться в различные липиды высшие жирные кислоты должны быть активированы Процесс активации высших жирных кислот состоит из 2 этапов

1 этап.За счет взаимодействия жирных кислот и использования специального фермента образуется ацшюденилаты

(так называемый термодинамический контроль направления процесса)

ЖК + АТФ -> R-С-АМФ + пирофосфат расщ. до ФК.(термодинамически й контроль)

2 этапПроисходит образование активной жирной кислоты соединенной с КоА и высвобождение АМФ Образование ацилКоА катализируется специальным ферментом, причем он катализирует и первую и вторую реакцию ацилКо Чсиптетата (тиокиназа)

R-С-АМФ + НSКоА -> R-С-SКоА + АМФ

В ходе активации высшей жирной кислоты АТФ распадается до АМФ и 2 остатков фосфорной кислоты таким жирные кислоты участвуют в активированной форме.

73. Кетоновые тела.

Соединения ацетоуксусные и р-гидроксимасляные кислоты поступают в кровь, а затем идут в клетки тканей, но для этих молекул диффузионного барьера не существует, поэтому они служат эффективным энергетическим топливом. Эти соединения получили название - ацетоновые тела. К ацетоновым телам относится и сам ацетон (диметилкетон) В то же время в гепатоциты высшие жирные кислоты поступают минуя диффузионный барьер потому, что гпатоциты в печеночных синусах непосредственно контактируют с кровью.

Биосинтез и распад ацетоновых тел. Жирные кислоты поступающие в гепатоциты, активируются и подвергаются р-окислению с образованием ацетилКоА Именно этот ацетилКоА используется для синтеза ацетоновых тел, согласно схеме В ходе первой реакции (в первуюреакциювступаю т 2 молекулы ацетилКоА, фермент ацетилКоА-ацетилтран сфера за = тиолаза) образуется 4-х углеродная молекула ацетоацетилКоА Эти соединения макроэргические поэтому в этом синтезе не принимает участие АТФ Входе следующей реакции (фермент В-гидрокси-Вметилглю коилК оА-синтетаза- первые этапыбиосинтезаацето новых тел и холестерина абсолютно равнозначны Это одна из ключевых реакций синтеза ацетоновых тел) используется еще одна молекула ацетилКоА, вода Образуется б-и углеродная молекула - р-гидроксир-метилглю тарил КоА. Последняя реакция - лиазная (катализирует фермент ГМГ-лиаза), происходит отщепление ацетилКоА и образование 4-х углеродной молекулы - ацетоацетата.

Как образуются два других соединения, относящихся к группе ацетоновых тел? Из ацетоуксусной кислоты спонтанно, чаще всего, или иногда за счет декарбоксилазы происходит отщепление карбоксильной группы в виде углекислого газа и образуется ацетон Ацетоуксусная кислота восстанавливается в ходе реакции катализируемой ферментом р-гидроксибутератдег идрог иназой с использованием НАД+Н+, в итоге образуется р-гидроксимасляная кислота Это третий составной элемент ацетоновых тел Образовавшиеся ацетоновые тела поступают из гепатоцитов в кровь и разносятся к клеткам Процесс синтеза ацетоновых тел идет постоянно и ацетоновые тела всегда присутствуют в крови в концентрации 30мг/л. При голодании их содержание может увеличиватьсядо400-5 00 мг/л Еще больше концентрация при сахарном диабете в тяжелой форме до 3000-4000 мг/л

Ацетоновые тела в норме хорошо утилизируются клетками периферических тканей, в особенности это касается скелетных мышц и миокашшСке,иетные мыишы и миокаод значительную часть нужной им энергии получают за счет окисления ацетоновых тел Только нервные клетки в обычных условиях не утилизируют ацетоновые тела, однако при голодании даже головной мозг 50-75% соей потребности в энергии удовлетворяет за счет окисления ацетоновых тел. Ацетоацетат, поступающий в клетки различных тканей, прежде всего подвергается активации помощью одного из двух механизмов Ацетоацетат с участием фермента тиокиназы, за счет энергии АТФ превращается в ацетоацетилКоА

Второй путь, является превалирующим в активации, это за счет фермента тиофоразы Реакция, в которой принимают участие сукценнКоА и адетоацетат, приводит к образованию ацетоацетилКоА и образование сукцината, Образующийся ацетоацетилКоА далее дает 2 молекулы ацетилКоА (принимает участие HSKoA, это тиолазная реакция) АцетилКоА поступает в цикл Кребса, где ацетильные остатки окисляются до углекислого газа и воды Ацетоновые тела по значимости - 3 тип топливной энергии В гепатоцитах нет фермента тиофоразы, поэтому образовавшийся в гепатоцитах ацетоацетат не активируется и не окисляется Таким образом печень экспортирует ацетоацетат, другими словами синтезирует этот вид топлива для других клеток р-гидрокснбутерат окисляется путем дегидрироаниявацетоа цетат , дальше ацетоацетат в ацетилКоА Что касается ацетона, возможно 2 варианта окисления Дело в том, что ацетон очень летуч поэтому большое количество выделяется вместе с выдыхаемым воздухом, кроме того ацетон выделяется с водой 1 путь Ацетон расщепляется до ацетильного и формильного остатка 2 путь Через пропандиол он превращается в пируват

Ацетоновые тела накапливаясь в крови и тканях оказывают ннгибирующие действие на липолиз, в особенности это касается расщепление триглицеридов в липоцитах Дело в том, что избыточное накопление в крови ацетоновых тел приводит к развитию ацидоза Снижение уровня липолиза в клетках жировой ткани приводит к уменьшению притока жирных кислот в гепатоцига, к снижению скорости образования ацетоновых тел н следовательно к снижению содержания в крови.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.