Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Превращение вредных веществ в организме



Вредные вещества
Окисление Восстановление Гидролиз
Связывание
Выделение
Ф-ты
Ф-ты

 

 


Эндоплазматический ретикулум клеток печени и других тканей представляет собой липопротеиновую канальцевую сеть, распространяющуюся от стенки клетки через всю цитоплазму. Имеет 2 типа ретикулума: шероховатый эндоплазматический ретикулум, поверхность которого усыпана рибосомами, являющимися местом синтеза белков, и гладкий эндоплазматический ретикулум, который не имеет рибосом. Наибольшая ферментативная активность связана с гладким эндоплазматическим ретикулумом. По-видимому, синтез ферментов происходит в шероховатом ретикулуме, но при насыщении ферментами он лишается своих рибосом и превращается в гладкий ретикулум.

Биологическое окисление, катализируемое системами микросомальных ферментов, включает широкий круг реакций, но все они могут быть сведены к одному общему механизму, а именно к гидроксилированию.

Реакции микросомального окисления протекают по следующим схемам.

1. Гидроксилирование ароматического кольца:

C6H5R ------- HOC6H4R

2. Гидроксилирование боковой цепи (ациклическое):

RCH3 ------ RCH2OH

3. N-дезалкилирование:

R-NH-CH3 ----- [R-HCH2OH] ----- RNH2 + HCOH

4. О-дезалкилирование:

R-О-СН3 ----- [R-O-CH2OH] ----- ROH + HCOH

5. Дезаминирование:

R-CH(NH2)CH3 ----- [RCOH(NH2)CH3] ----- R-CO-CH3 + NH3

6. Образование сульфоксида:

R-S-СН3 ----- [R-S-CH2OH] ----- R-SO-СН3

Для всех этих реакций требуется восстановленный кофермент НАДФН2 и кислород. Восстановленный никотинадениндинуклеотидфосфат превращает кислород в активную молекулярную форму: активированный кислород в присутствии различных гидроксилаз гидроксилирует чужеродное соединение.

Микросомальные реакции восстановления не так универсальны, как окислительные. Предполагаются следующие этапы восстановления, включающие, по-видимому, и неферментативную фазу: микросомальный ферментативный комплекс НАДФН2 – цитохром-С-редуктаза или НАД-Н2 (никотинамидадениннуклеотид) - цитохром -В-редуктаза восстанавливает ФАД (флавинадениннуклеотид) в ФАД-Н2. Последний неферментативно восстанавливает ядовитое соединение:

ФАДН2 + R-NO2 ----- ФАД + RNH2 + 2Н2О

Немикросомальные реакции окисления, восстановления и гидролиза катализируются многими ферментными системами. Например, в растворимой фракции гомогенатов печени, почек и легких содержится алкогольдегидрогеназа, которая быстро окисляет многие первичные спирты в соответствующие альдегиды. Необходимым коферментом этих реакций является НАД или НАДФ и участие цитохрома Р-450.

Алкогольдегидрогеназа

СН3СН2ОН + НАД ----- СН3-СOH + НАД-Н2

Известно несколько типов немикросомального восстановления: восстановление двойных связей, дисульфидов, сульфоксидов и др.

Гидролитическому расщеплению подвергаются сложные эфиры и амиды кислот. В этом процессе участвуют ферменты (эстеразы, амидазы), находящиеся в печени и в плазме крови:

Эстераза

RCOOR' + Н2О ----- RCOOH + R'OH

Амидаза

RCOHNH2 ----- RCOOH + NH3

После первичных реакций биотрансформации ядовитые соединения могут приобретать химические активные группы (ОН, СООН, NH2, SH и др.), которые вступают в реакцию конъюгации с эндогенными субстратами: глюкуроновой кислотой, сульфатом, уксусной кислотой, некоторыми аминокислотами. В результате образуются более полярные молекулы, легко выделяющиеся из организма с мочой. Таким образом в организме трансформируются фенолы, спирты, карбоновые кислоты, аминосоединения и другие.

Металлы и их соединения, попадая в организм, могут многократно менять свою форму. Большую часть пребывания в организме они существуют в виде комплексов с белками. Исключение составляют щелочные и частично щелочноземельные металлы. Первые содержатся в жидкой фазе в ионной форме, частично образуют непрочные, легко гидролизуемые комплексы. Металлы соединяются с активными группами биокомплексов: ОН, СООН, НРО3 и лимонной кислотой. Существует сродство отдельных металлов к белкам и аминокислотам. С аминокислотами через SH-группы соединяются Hg, Pb, Co, Cd; через СООН-группы - Сu, Ni, Zn, Mg, Ca. Металлы, преимущественно с переменной валентностью, подвергаются в организме восстановлению и окислению. Так, пятивалентный мышьяк восстанавливается в организме до более токсичного трехвалентного.

Выделение вредных веществ из организма. Токсичные вещества выделяются через легкие, почки, желудочно-кишечный тракт, кожу. При этом яды могут выделяться несколькими путями одновременно.

Скорость выведения вредных веществ обычно наибольшая в первые дни и недели после поступления их в организм, а в дальнейшем она замедляется. Для характеристики ее может быть использован биологический период полувыведения - время, необходимое для уменьшения в организме или отдельных органах концентрации вещества на 50%.

Выделение через легкие. Многие летучие неэлектролиты в основном выделяются из организма в неизмененном виде с выдыхаемым воздухом. Скорость выделения паров и газов зависит от растворимости их в воде. Чем она меньше, тем быстрее происходит выделение яда, находящегося в крови и органах. Более медленно выделяются вредные вещества, депонированные в жировой ткани.

Через легкие могут выделяться также летучие метаболиты, образующиеся при биотрансформации яда. Такими конечными метаболитами могут быть вода и углекислота.

Выделение через почки. Выделение ядов через почки осуществляется путем пассивной фильтрации и активным транспортом. В почечных канальцах неэлектролиты, хорошо растворимые в липидах, путем пассивной диффузии могут проникать в двух направлениях - из канальцев в кровь и из крови в канальцы. Направление пассивной канальцевой диффузии слабоионизированных органических электролитов зависит от реакции мочи. Если канальцевая моча более щелочная, чем плазма, в мочу легко проникают слабые органические кислоты; если реакция мочи более кислая, в нее диффундируют слабые органические основания. Образующиеся в процессе биотрансформации многих ядов конъюгаты с серной и глюкуроновой кислотами концентрируются в моче благодаря активному канальцевому транспорту, достигая при этом высокой степени накопления.

Почками быстро выделяются металлы, циркулирующие в виде ионов и в молекулярно-дисперсном состоянии. К ним следует отнести литий, рубидий, цезий. Хорошо экскретируются с мочой соли двухвалентных металлов (Be, Cd, Сu). Комплексообразование способствует выделению металлов. Металлы могут выделяться не только в свободном, но и в связанном виде. Так, например, свинец и марганец экскретируются как в ионной форме, так и в виде органических комплексов.

Выделение через желудочно-кишечный тракт. Выделение промышленных ядов через желудочно-кишечный тракт начинается уже во рту со слюной. В слюне обнаруживаются некоторые неэлектролиты и тяжелые металлы, например, ртуть, свинец и др. Ядовитые соединения, поступающие в организм, попадают в печень. Из печени с желчью их метаболиты транспортируются в кишечник и выделяются из организма.

Металлы выделяются также через желудочно-кишечный тракт. Они задерживаются в печени и с желчью выделяются в кишечник. В процессе выделения через желудочно-кишечный тракт имеет значение форма, в которой металл накапливается в депо. Металлы длительно сохраняются в печени и полностью выделяются с калом.

Выделение прочими путями. Промышленные яды могут выделяться из организма также с грудным молоком и через кожу с потом. С грудным молоком кормящих женщин выделяются хлорированные углеводороды, главным образом инсектициды (ДДТ, гексахлоран и др.), ртуть, селен, мышьяк и др.

Через кожу выделяются из организма многие неэлектролиты: этиловый спирт, ацетон, фенол, фторированные углеводороды и др. Известно, что содержание сероуглерода в поте превышает erо концентрацию в моче в три раза.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.