Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Пути преобразования энергии в живой клетке



Основные виды работы в живой клетке – электрическая и осмотическая – выполняются при непосредственном участии биологических мембран. Центральную роль в энергетике клетки играют процессы синтеза и распада АТФ. В клетке АТФ является аккумулятором химической энергии. Молекулярный механизм сопряжения реакций окисления и фосфорилирования был расшифрован Митчеллом в 1976 году. Автор разработал хемиосмотическую теорию окислительного фосфорилирования.

Вторая часть теории Митчелла заключается в том, что в мембране существует асимметричная АТФ-аза, которая работает обратимо, то есть может быть и АТФ-синтетазой:

АТФ + НОН (атф-аза) АДФ + Ф + 2Н+

Асимметричность в действии АТФ-азы заключается в том, что

а) при гидролизе АТФ протон Н+ и гидроксил ОН- захватываются по разные стороны от мембраны;

б) при синтезе АТФ вода диссоциирует на ОН-, который поступает в более закисленную от мембраны сторону, и Н+, который диффундирует в противоположную сторону.

В целом процесс фосфорилирования АДФ осуществляется за счет изменения свободной энергии при нейтрализации иона ОН- в кислой среде, и иона Н+ в щелочной среде.

С точки зрения преобразования энергии процесс окислительного фосфорилирования состоит из двух стадий:

1. Превращение химической энергии переноса электронов в энергию, связанную с разностью электрохимических потенциалов протонов в результате сопряжения переноса электрона по дыхательной цепи и переноса протона через мембрану. При этом: ΔμH+ = FΔφM + RT ln ([H+]1/[H+]2), где ΔμH+ - разность электрохимических потенциалов; ΔφM – разность электрических потенциалов между внешней и внутренней сторонами мембраны митохондрий; ([H+]1 и [H+]2 – концентрации протонов в окружающей среде и внутри митохондрий.

2. Превращение энергии, определяемой разностью электрических потенциалов, в химическую энергию макроэргической связи АТФ (сопряжение переноса 2Н+ и синтеза одной молекулы АТФ из АДФ и фосфата). Это условно можно изобразить в виде ΔμH+ → QUOTE ~ ~.

В настоящее время показано, что при наличии разности электрохимических потенциалов Н+ на сопрягающей мембране может совершаться не только химическая работа (синтез АТФ), но и осмотическая работа (при транспорте различных соединений через мембраны), механическая работа (движение жгутиков у бактерий), а также выделяться тепло (теплорегуляторное разобщение окислительного фосфолирилирования).

Символически хемиосмотическая теория сопряжения процессов окисления (т.е. переноса электронов – e) и фосфорилирования (синтез макроэргов - QUOTE ~ ~) может быть представлена в виде схемы e QUOTE ΔμH+ QUOTE QUOTE ~ ~. Из этой схемы вытекают следующие основные следствия хемиосмотической теории:

1. Если ΔμH+= 0, то при переносе электронов не происходит синтез АТФ.

2. При работе дыхательной цепи происходит генерация мембранного потенциала (е→ΔφM).

3. Создание достаточного по величине электрического потенциала на энергосопрягающей мембране со знаком «+» снаружи приведет к синтезу АТФ из АДФ и ортофосфата (ΔφM → QUOTE ~) ~).

4. За счет мембранного потенциала можно остановить и даже «повернуть вспять» поток электронов в дыхательной цепи ( ΔφM →e).

5. При гидролизе АТФ на сопрягающей мембране происходит генерация мембранного потенциала ( QUOTE ~ ~ → ΔφM).

Таким образом, термодинамика наука феноменологическая, а феноменологические теории, в отличие от атомно-молекулярных, изучают закономерности, не связанные с конкретной структурой вещества. Законы термодинамики были созданы для описания неживых систем, но так как важнейшим свойством живых организмов является способность улавливать, преобразовывать и запасать энергию в различных формах, то для них также применимы данные законы. Любая часть окружающего нас мира, которую мы хотим исследовать и описать с позиций термодинамики, является системой.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.