Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Линейная и трёхмерная поликонденсации



В реакции поликонденсации могут вступать как один мономер с двумя различными функциональными группами: например, синтез поли-ε-капроамида (найлона-6, капрон) из ε-аминокапроновой кислоты, так и два мономера, несущие различные функциональные группы, например, синтез найлона-66 поликонденсацией адипиновой кислоты и гексаметилендиамина; при этом образуются полимеры линейного строения. В случае, если мономер (или мономеры) несут более двух функциональных групп, образуются сшитые полимеры трёхмерной сетчатой структуры (трёхмерная поликонденсация). С целью получения таких полимеров к смеси мономеров нередко добавляют "сшивающие" полифункциональные компоненты.

Особняком стоят реакции синтеза полимеров из циклических мономеров по механизму раскрытия цикла - присоединение, например, синтез найлона-6 из капролактама (циклического амида ε-аминокапроновой кислоты); несмотря на то, что выделение низкомолекулярного фрагмента при этом не происходит, такие реакции чаще относят к поликонденсации.

Основные промышленные группы полимеров, синтезируемых поликонденсацией

Линейные полимеры:

1. Полиамиды

2. Полиуретаны

3. Поликарбонаты

4. Полиэфиры

5. Полисилоксаны

 

Сетчатые полимеры:

1. Алкидные смолы

2. Меламин-альдегидные смолы

3. Мочевино-альдегидные смолы

4. Фенол-альдегидные смолы

 

Полиамиды

Полиамиды — пластмассы на основе синтетических высокомолекулярных соединений, содержащих в основной цепи амидные группы —CONH—. Полиамиды получают поликонденсацией амидов многоосновных кислот с альдегидами, поликонденсацией высших аминокислот или диаминов с дикарбоновыми кислотами, конденсацией капролактама и солей диаминов дикарбоновых кислот и др. Полиамиды применяют в виде волокон типа капрон, найлон, пленок, клеев и покрытий, как антикоррозийные материалы для защиты металлов и бетонов, в медицине (для хирургических швов, в глазной хирургии, для искусственных кровеносных сосудов, как заменители костей), как заменители кожи.

Поликарбонаты

Сополимеры

Cополимеры — разновидность полимеров, цепочки молекул которых состоят из двух или более различных структурных звеньев. Различают регулярные и нерегулярные сополимеры (коих большинство). Различные структурные звенья нерегулярных сополимеров беспорядочно расположены вдоль цепочки. В регулярных же сополимерах различные структурные звенья расположены упорядоченно и, следовательно, регулярные сополимеры могут быть представлены как обычные полимеры с большими структурными звеньями. Отдельно можно назвать блок-сополимеры, состоящие из нескольких (гомо)полимерных блоков.

Сополимеры получаются в результате реакций сополимеризации. Сополимеризация — полимеризация, в которой участвуют два или несколько различных мономеров. В результате сополимеризации образуются сополимеры, макромолекулы которых состоят из двух или более разнородных структурных звеньев. Сополимеризация позволяет получать высокомолекулярные вещества с разнообразными свойствами.

Полиуретаны

Полиуретаны — гетероцепные полимеры, макромолекула которых содержит незамещённую и/или замещённую уретановую группу —N(R)—C(O)O—, где R = Н, алкил, арил или ацил. В макромолекулах полиуретанов также могут содержаться простые и сложноэфирные функциональные группы, мочевинная, амидная группы и некоторые другие функциональные группы, определяющие комплекс свойств этих полимеров. Полиуретаны относятся к синтетическим эластомерам и нашли широкое применение в промышленности благодаря широкому диапазону прочностных характеристик. Используются в качестве заменителей резины при производстве предметов торговли, работающих в агрессивных средах, в условиях больших знакопеременных нагрузок и температур. Диапазон рабочих температур — от -60° С до +80° С .

Получение

Полиуретаны получают взаимодействием соединений, содержащих изоцианатные группы с би- и полифункциональными гидроксилсодержащими производными.

В качестве изоцианатов используются толуилендиизоцианаты (2,4- и 2,6-изомеры или их смесь в соотношении 65:35), 4,4'-дифенилметан-, 1,5-нафтилен-, гекса-метилендиизоцианаты, полиизоцианаты, трифенилметан-триизоцианат, биуретизоцианат, изоциануратизоцианаты, димер 2,4-толуилендиизоцианата, блокированные изоцианаты.

Строение исходного изоцианата определяет скорость уретанообразования, прочностные показатели, световую и радиационную стойкость, а также жёсткость полиуретанов.

Гидроксилсодержащми компонентами являются:

 

олигогликоли — продукты гомо- и сополимеризации Тетрагидрофурана, пропен- и этиленоксидов, бутадиена, изопрена;

сложные полиэфиры с концевыми группами ОН — линейные продукты поликонденсации адипиновой, фталевой и других дикарбоновых кислот с этен-, пропен-, бутилен- или другими низкомолекулярным гликолями;

разветвленные продукты поликонденсации перечисленных кислот и гликолей с добавкой триолов (глицерина, триметилол-пропана), продукты полимеризации ε-капролактона.

Гидроксилсодержащий компонент определяет, в основном, комплекс физико-механических свойств полиуретанов.

Для удлинения и структурирования цепей применяются гидроксилсодержащие вещества (например, вода, гликоли, моноаллиловый эфир глицерина, касторовое масло)и диамины (-4,4'-метилен-бис-(о-хлоранилин), фенилен-диамины). Эти агенты определяют молекулярную массу линейных полиуретанов, густоту вулканизационной сетки и строение поперечных химических связей, возможность образования доменных структур, т.е. комплекс свойств полиуретанов и их назначение (пенопласты, волокна, эластомеры и т.д.).

В качестве Катализаторов для процесса уретанообразования используют третичные амины, хелатные соединения железа, купрума, бериллия, ванадия, нафтенаты свинца и олова, октаноат и лауринат олова. При процессе циклотримеризации Катализаторами являются неорганические основания и комплексы третичных аминов с эпоксидами.

Свойства

Свойства полиуретанов изменяются в очень широких пределах и зависят от природы и длины участков цепи между уретановыми группами, структуры цепей (линейная или сетчатая), молекулярной массы и степени кристалличности. Полиуретаны могут быть вязкими жидкостями или являться твёрдыми веществами в аморфном или кристаллическом состоянии. Их свойства варьируются от высокоэластичных мягких резин (твёрдость по Шору от 15 по шкале А) до жёстких пластиков (твёрдость по Шору 60 по шкале D).

Полиуретаны устойчивы к действию кислот, минеральных и органических масел, бензина, окислителей, а по гидролитической стойкости превосходят полиамиды. Линейные полиуретаны растворимы в таких полярных растворителях как диметилформамид, диметилсульфоксид).

Полиуретаны мало подвержены старению, стойки к абразивному износу и имеют высокую стойкость к воздействию окружающей среды (озоном, ультрафиолетовыми лучами и морской водой).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.