Тема:Методика расчета конфигурации сети Fast Ethernet
Сначала поговорим о правилах построения сети, затем о методах проверки их выполнения.
Если говорить о сетевом оборудовании, то кроме кабелей для установки Fast Ethernet потребуются сетевые адаптеры для рабочих станций и серверов, концентраторы 100BaseT и, возможно, некоторое количество коммутаторов 100BaseT.
Адаптеры, необходимые для организации сети 100BaseT, носят название адаптеров Ethernet 10/100 Мбит/с. Они способны (это требование стандарта 100BaseT мы рассматривали) самостоятельно отличать скорость 10 Мбит/сот100 Мбит/с.
В сетях Fast Ethernet любой источник кадров данных для сети: сетевой адаптер, порт моста, порт маршрутизатора, модуль управления сетью и др. относят к определенной категории оборудования, которая называется – DTE (Data Terminal Equipment).
Каждый кадр, который вырабатывает такое устройство для разделяемого сегмента – это новый кадр. Так, к примеру, если мост (коммутатор) передают через свой выходной порт кадр, который поступил в свое время от подключенного к нему сетевого адаптера, то для сегмента сети, к которому подключен этот выходной порт, этот кадр является новым.
Порт повторителя не является DTE, так как он просто побитно повторяет на выходе, то, что получает на входе, то есть повторяет уже появившийся в сегменте кадр.
Основные правила корректной конфигурации Ethernet 802.3:
– количество узлов не более 1024
– максимальная длина кабеля в сегменте определена соответствующей спецификацией
– время двойного оборота сигнала (Path Delay Value, Pдаленными DV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала
– сокращение межкадрового интервала IPG (Path Variability Value, PVV) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала.
Для сети Fast Ethernet, которая сохранила протоколы MAC уровня Ethernet, выполнение условия – PDV сети не более 575 битовых интервала остается в силе.
Условие – PVV не больше, чем 49 битовых интервала выполняется всегда, поскольку в сетях Fast Ethernet используется не большое количество повторителей, которые вносят задержки распространения в сеть. А что касается требований физического уровня – это для сети Fast Ethernet отдельный вопрос.
Правила корректного построения сегментов сетей Fast Ethernet включают:
1. ограничения на максимальные длины сегментов, которые соединяют устройства- источники кадров (соединение DTE- DTE);
2. ограничения на максимальные длины сегментов, соединяющих устройства-источники кадров (DTE) с портом повторителя;
3. ограничения на общий максимальный диаметр сети;
4. ограничения на максимальное число повторителей и максимальную длину сегмента, соединяющего повторители.
В типичной конфигурации сети Fast Ethernet несколько устройств-источников кадров (DTE) подключается к портам повторителя, образуя сеть топологии звезда.
Соединения DTE-DTE в разделяемых сегментах не встречаются (петлевидные соединения повторителей не допустимы), а вот для мостов/коммутаторов и маршрутизаторов такие соединения являются нормой – когда сетевой адаптер прямо соединен с портом одного из этих устройств, либо эти устройства соединяются друг с другом.
Спецификация IEEE 802.3u определяет следующие максимальные значения сегментов, которые соединяют устройства-источники кадров (DTE-DTE)
Стандарт
Тип кабеля
Максимальная длина сегмента
100Base-TX
Category 5 UTP
100 метров
100Base-FX
многомодовое оптоволокно
62.5/125 мкм
412 метров (полудуплекс)
2 км (полный дуплекс)
100Base-T4
Category 3,4 или 5 UTP
100 метров
Теперь поговорим об использовании повторителей в сетях Fast Ethernet.
Повторители Fast Ethernet делятся на два класса.
Повторители класса I поддерживают все типы логического кодирования данных: как 4В/5В, так и 8В/6Т.
Повторители класса II поддерживают только какой-либо один тип логического кодирования - либо 4В/5В, либо 8В/6Т.
Повторители класса I могут иметь порты всех трех типов физического уровня Fast Ethernet: 100Base-TX, 100Base-FXи100Base-T4.
Повторители класса II имеют либо все порты 100Base-T4, либо порты 100Base-TX и 100Base-FX, так как последние оба используют один и тот же логический код 4В/5В.
В одном домене коллизий допускается наличие только одного повторителя класса I.
Это связано с тем, что такой повторитель вносит большую задержку при распространении сигналов из-за необходимости передачи различных систем сигнализации. Величина этой задержки распространения для одного повторителя класса I равна 70 bt.
Повторители класса II вносят меньшую задержку при передаче сигналов: 46 btдля портов TX/FX и33,5 btдля портов Т4.
Поэтому максимальное число повторителей класса II в одном домене коллизий определили – 2.
Причем допустимое расстояние между этими двумя повторителями, по соответствию выполнения условия допустимого PDV, можно выбирать не длиннее 5 метров.
Итак, максимальное число повторителей класса II в домене коллизий – 2, причем они соединяются между собой кабелем не длиннее 5 метров.
Условие не длиннее 5-ти метров на самом деле универсальное, справедливое для всех типов конфигураций, но если произвести необходимые расчеты, то можно показать, что для некоторых конфигураций это расстояние может быть и больше. С другой стороны, если просто пользоваться именно этим ограничением, то вы никогда не ошибетесь. Для того чтобы проводить, какие либо расчеты нам нужны некоторые справочные данные для стандарта Fast Ethernet.
То, что в сети Fast Ethernet можно использовать небольшое количество повторителей не является серьезным препятствием при построении больших сетей, так как применение коммутаторов и маршрутизаторов делит сеть на несколько доменов коллизий, каждый из которых будет строиться на одном или двух повторителях. Общая длина сети не будет иметь в этом случае ограничений.
С такой логической структурой сети мы познакомимся далее в наших последующих уроках при изучении работы мостов и маршрутизаторов.
Итак, давайте приведем правила построения сети на основе повторителей класса I.
Тип кабелей
Максимальный диаметр сети
Максимальная длина сегмента
Только витая пара (TX)
200 м
100 м
Только оптоволокно (FX)
272 м
136 м
Несколько сегментов на витой паре и один на оптоволокне
260 м
100 м (TX)
160 м (FX)
Несколько сегментов на витой паре и несколько сегментов на оптоволокне
272 м
100 м (TX)
136 м (FX)
Таким образом, правило 4-х хабов превратилось для технологии Fast Ethernet в правило одного или двух хабов, в зависимости от класса хаба.
Но для определения корректной конфигурации сети можно не руководствоваться правилами одного или двух хабов, а нужно рассчитывать время двойного оборота сети, PDV, как это было показано выше для сети Ethernet 10 Мбит/с.
Как и для технологии Ethernet 10 Мбит/с, комитет 802.3 дает исходные данные для расчета времени двойного оборота сигнала. Однако при этом сама форма представления этих данных и методика расчета несколько изменились. Комитет предоставляет данные об удвоенных задержках, вносимых каждым элементом сети, не разделяя сегменты сети на левый, правый и промежуточный.
Кроме того, задержки, вносимые сетевыми адаптерами, учитывают преамбулы кадров, поэтому время двойного оборота при расчете конфигурации Fast Ethernet нужно сравнивать с величиной 512 битовых интервала (bt), то есть со временем передачи кадра минимальной длины без преамбулы.
Для повторителей класса I PDV можно рассчитать следующим образом.
Задержки, вносимые прохождением сигналов по кабелю, рассчитываются на основании данных таблицы, в которой учитывается удвоенное прохождение сигнала по кабелю.
Тип кабелей
Удвоенная задержка в bt на 1м
Удвоенная задержка на кабеле максимальной длины
UTP Cat 3
1,14bt
114bt (100м)
UTP Cat 4
1,14bt
114bt (100м)
UTP Cat 5
1,112bt
111,2 bt(100м)
STP
1,112bt
111,2 bt(100м)
Оптоволокно
1,0 bt
412 (412м)
Задержки, которые вносят два взаимодействующих через повторитель сетевых адаптера (или порта коммутатора), берутся из другой таблицы.
Тип сетевых адаптеров
Максимальная задержка при двойном обороте
Два адаптера TX/FX
100bt
Два адаптера T4
138 bt
Один адаптер TX/FX и один Т4
127 bt
Учитывая, что удвоенная задержка, вносимая повторителем класса I, равна 140 bt, можно рассчитать время двойного оборота для произвольной конфигурации сети, естественно, учитывая максимально возможные длины непрерывных сегментов кабелей, приведенные в таблице.