Допустим, что в ходе функционирования производственного процесса у руководства ТЦ или финансово-промышленной группы возникают два очень важных вопроса:
1. Под влиянием каких факторов произошло изменение показателя взаимодействия?
2. Изменение каких факторов оказало наибольшее влияние на отклонение фактических показателей от запланированных на этапе оценки экономической эффективности производственного цикла?
Ответы на эти вопросы необходимо получить на этапе контроля производственного процесса для своевременного выявления и устранения причин вызвавших изменение.
Для ответа на поставленные вопросы проводится первый этап анализа функционирования ТЦ, который сводится к выявлению роли факторов – факторный анализ показателя взаимодействия.
Первый шаг анализа – преобразование формулы показателя взаимодействия в мультипликативную модель вида
,
где
Y — результирующая функция (показатель взаимодействия технологической цепочки);
X —вектор факторов, от которых зависит результирующая функция.
Чтобы избавиться от единиц измерения, в формулу (3.5) в знаменатель при ЧПЦ и в числитель при ВАЦ вместо единиц введем нормирующий множитель (нм).
Мультипликативная модель ПВ будет иметь вид:
ЧПЦ нм 1ПВ = –––––– * –––––– * ––––– , нм ВАЦ ЭСР
где
ПВ – результирующая функция;
ЧПЦ
–––––– – фактор 1;
нм
нм
–––––– – фактор 2;
ВАЦ
–––– – фактор 3.
ЭСР
Применив к мультипликативной модели ПВ метод цепных подстановок, можно ответить на поставленные вопросы.
Для ответа на первый вопрос необходимо воспользоваться алгоритмом А, суть которого состоит в следующем:
1. Определяются исходные значения факторов в начальный (X0) и конечный (X1) периоды исследования.
2. Определяется приращение (Dxi) каждого фактора за исследуемый период времени
Dxi = xi1 — xi0 , i = 1, ... , n (n – количество факторов),
где
хi0 – величина i-го фактора в начальном периоде;
хi1 – величина i-го фактора в конечном периоде.
3. Вычисляется влияние приращения каждого фактора на приращение показателя взаимодействия за исследуемый период времени
DYxi = * Dxi * , (n – количество факторов),
при этом
DY = DYxi .
4. По полученному значению DYxi определяется, изменение какого фактора оказало максимальное влияние на изменение значения показателя взаимодействия предприятия.
5. Если период исследования состоит из нескольких промежутков времени, то оценить влияние изменения факторов на изменение показателя взаимодействия можно на каждом промежутке. В этом случае конечное значение фактора на предыдущем интервале является начальным значением для последующего.
Для ответа на первый вопрос необходимо воспользоваться алгоритмом Б:
1. Определяются исходные плановые значения факторов (X0) и фактические значения (X1) в определенном периоде исследования.
2. Определяется отклонение фактического значения от планового (Dxi) каждого фактора в исследуемом периоде времени
Dxi = xi1 — xi0 , i = 1, ... , n (n – количество факторов),
где
хi0 – плановое значение i-го фактора в исследуемом периоде;
хi1 – фактическое значение i-го фактора в исследуемом периоде.
3. Вычисляется влияние отклонения каждого фактора на итоговое отклонение фактического значения показателя взаимодействия от планового значения
DYxi = * Dxi * , (n – количество факторов),
при этом
DY = DYxi .
4. По полученному значению DYxi определяется, отклонение какого фактора оказало максимальное влияние на отклонение фактического значения ПВ от планового значения.
5. Если период исследования состоит из нескольких промежутков времени, то оценить влияние отклонения фактических значений факторов от плановых значений на отклонение фактического значения ПВ от планового можно на каждом промежутке. В этом случае для каждого промежутка времени необходимо иметь плановые и фактические значения соответствующих факторов. Имея исходные данные необходимо действовать по алгоритму Б.
Пример 3.4. Пусть имеются результирующая функция Y и факторы x1, x2, x3, заполним таблицу 3.7:
Таблица 3.7
Начальный период
Конечный период
Результирующая функция
Y0
Y1
Фактор 1
x10
x11
Фактор 2
x20
x21
Фактор 3
x30
x31
Тогда влияние изменения первого фактора на изменение результирующей функции
DYх1 = (х11 - х10) * х21 * х31 ;
влияние изменения второго фактора на изменение результирующего показателя
DYх2 = х10 * (х21 - х20) * х31 ;
влияние изменения третьего фактора на изменение результирующего показателя:
DYх3 = х10 * х20 * (х31 - х30).
Проверить правильность расчетов можно с помощью следующей формулы:
DY = Y1 - Y0 = DYх1 + DYх2 + DYх3 .
Применив метод цепных подстановок, можно выявить изменение какого из факторов в наибольшей степени повлияло на снижение эффективности деятельности технологической цепочки.
Пример 3.5. Заполним таблицу 3.8:
Таблица 3.8
Значения исходных показателей
Наименование
Начальный период
Конечный период
Фактор 1 – ЧПЦ / 1 у.е.
161 000 000
173 000 000
Валовые активы цепочки ВАЦ
7 500 000 000
8 320 000 000
Фактор 2 – 1 у.е. / ВАЦ
1,33E-10
1,20E-10
Средняя эффективность Эср
0,0241
0,0212
Фактор 3 – 1 / ЭСР
41,51
47,06
Результирующая функция ПВ
0,8911
0,9786
Применив метод цепных подстановок, рассчитаем влияния изменения различных факторов на изменение показателя взаимодействия и заполним таблицу 3.9:
По данным таблицы 3.9 можно сделать вывод, что на увеличение показателя взаимодействия повлияло в большей степени уменьшение среднего значения эффективности, а также увеличение совокупной чистой прибыли, отрицательное влияние оказало увеличение совокупных валовых активов цепочки и, как следствие, уменьшение фактора 2.
Таким образом первый и второй этапы применяется для анализа деятельности ТЦ в целом и выявления причин изменения показателя взаимодействия.
Далее следует третий этап – выявление узкого места технологической цепочки.