Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Космологическая модель А.А. Фридмана



В феврале 1917 года А. Эйнштейн опубликовал статью, которая стала исходным пунктом на пути к современным космологическим представлениям. В этой статье Эйнштейн применил к Вселенной только что выведенные им уравнения общей теории относительности. Самым удивительным оказалось то, что из написанного им «мирового уравнения» вытекала невозможность стационарного, то есть не изменяющегося со временем, состояния Вселенной. Получалось, что от малейшего «толчка» силы тяготения начнут либо неумолимо сжимать все вещество, находящееся во Вселенной, в точку, либо, наоборот, «распираемый изнутри» мир станет неудержимо расширяться (здесь уместно вспомнить гравитационный парадокс Зелигера-Неймана). Другими словами, радиус кривизны Вселенной и средняя плотность материи в ней получались у Эйнштейна зависящими от времени, хотя их постоянство было взято за основу при выводе «мирового уравнения». После некоторых колебаний Эйнштейн добавил к «мировому уравнению» еще одно слагаемое, так называемую космологическую постоянную, учитывающую гипотетическую антигравитацию. Это позволило Эйнштейну «закрепить» мир, не дать ему потерять устойчивость. С самого начала было ясно, что такая математическая «подпорка» носит явно искусственный характер1.

Весной 1922 года в главном физическом журнале того времени - «Zeitschrift fur Physik» появилось обращение «К немецким физикам!». Правление Германского физического общества извещало о трудном положении коллег в России, которые с начала войны не получали немецких журналов. Поскольку лидирующее положение в тогдашней физике занимали немецкоязычные ученые, речь шла о многолетнем информационном голоде. Немецких физиков просили направлять публикации последних лет с тем, чтобы потом переслать их в Петроград. Однако в том же журнале, двадцатью пятью страницами ниже, помещена статья, полученная из Петрограда, на первый взгляд, противоречащая призыву о помощи. Имя автора - А. Фридман - физикам было неизвестно. Его статья с названием «О кривизне пространства» касалась общей теории относительности. Точнее - ее самого грандиозного приложения: космологии. Именно в этой статье родилось «расширение Вселенной». До 1922 года такое словосочетание выглядело бы полной нелепостью. О том, что расширение Вселенной началось миллиарды лет назад, астрофизике еще только предстояло узнать. Но «горизонт познания» раздвинулся именно в 1922 г. И раздвинул его тридцатичетырехлетний Александр Фридман.

Далеко не сразу эта модель была признана научным миром, а Эйнштейн, который одним из первых познакомился с расчетами А.А.Фридмана, даже обвинил их автора в элементарной ошибке. Однако ошибки не было, и тот же Эйнштейн в 1923 году сам написал об этом: «Я считаю результаты Фридмана правильными и проливающими новый свет».

А.А. Фридман не дожил до блестящего экспериментального подтверждения своих выводов1, когда в 1929 году американский астрофизик Э. Хаббл обнаружил «красное смещение» спектральных линий излучения, приходящего от удаленных галактик. Это смещение указывало на то, что Вселенная расширяется, причем «разбегание» любых двух галактик происходит со скоростью v, пропорциональной расстоянию L между этими галактиками: v = HL, где H - постоянная Хаббла. Именно такое соотношение между скоростью и расстоянием вытекало из теории Фридмана.

Измеренное Хабблом значение постоянной H = 150((км/с)/106све-товых лет) оказалось завышенным более чем на порядок, и эта ошибка сыграла важную роль в дальнейшем развитии естествознания XX века. Действительно, если принять, что расширение Вселенной происходит достаточно равномерно, то легко убедиться, что промежуток времени t от начала расширения равен обратной постоянной Хаббла:

 

t = . (9.1)

 

Но тогда возраст Вселенной t оказывается равным всего навсего двум миллиардам лет! Это значение оказалось даже меньше, чем возраст Земли, который считается равным ~ 4,5 миллиардам лет. С учетом того, что погрешность определения постоянной Хаббла была достаточно большой, из приведенных оценок был сделан вывод: все (!) космические объекты - галактики, звезды, наша Солнечная система - образовались одновременно в момент начала расширения Вселенной. Но тогда в этот момент должно было появиться и все многообразие химических элементов. А чтобы это было возможно, необходимо было предположить, что хотя бы в первые мгновения жизни Вселенной, ее температура была очень высока. Только в этом случае имели место условия, необходимые для реализации термоядерного синтеза, в результате которого могли образовываться ядра всех химических элементов - от легких до самых тяжелых. Так появилась концепция Большого Взрыва (Г. Гамов, 1946 - 1948 гг.).

После уточнения значения постоянной Хаббла H она оказалась равной всего 15 ((км/с) / 106 световых лет), а это сразу увеличивало возраст Вселенной на порядок: до ~ 20 млрд лет[1]. Таким образом, открывалась другая возможность образования тяжелых химических элементов: эти элементы могли возникать в процессе эволюции звезд, о чем будет идти речь в следующем разделе. Необходимость в высоких температурах на ранних стадиях эволюции Вселенной отпала, и на некоторое время модель «горячего рождения» Вселенной отошла в тень. Ее настоящим триумфом стало одно из самых великих научных открытий XX века: экспериментальное обнаружение в 1965 году (А. Пензиас и Р. Вильсон[2]) реликтового излучения, которое «путешествует» в пространстве с тех времен, когда Вселенной было всего около миллиона лет. Это излучение могло возникнуть только в том случае, если молодая Вселенная была достаточно горячей, и если свет в то время был самым активным участником физических процессов.

В настоящее время модель Большого Взрыва продолжает развиваться, уточняться, однако фундаментальные положения, лежащие в ее основе, остаются неизменными и общепризнанными научным сообществом.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.