Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Фундаментальные взаимодействия в природе



К середине ХХ века экспериментальная база для проведения исследований микромира была в основном создана и начался планомерной штурм глубинной структуры вещества. Результаты этого штурма оказались во многом неожиданными и привели к совершенно новому взгляду на природу материи.

Во-первых, почти сразу было обнаружено несколько сотен различных элементарных частиц, и число их продолжает расти. Это вызвало недоумение и даже разочарование ученых. Ведь трудно поверить, что Природа заложила в свой фундамент столь разнообразную первооснову. Возник вопрос: действительно ли обнаруженные частицы являются элементарными? Довольно скоро стало ясно, что число «истинно элементарных» частиц гораздо меньше.

Во-вторых, подавляющее большинство элементарных частиц являются нестабильными, их время жизни ничтожно мало. При этом во всех известных сегодня реакциях эти частицы лишь переходят друг в друга и никакие более простые «куски» от них не отщепляются. Но самое удивительное заключается в том, что при таких взаимных превращениях уже не имеют места привычные для нас представления о части и целом, о простом и сложном. Например, протон, испустив достаточно массивный положительно заряженный мезон, становится нейтроном, который при определенных условиях может испустить отрицательно заряженный мезон и в свою очередь превратиться в... протон. На первый взгляд это противоречит здравому смыслу, так как нейтрон массивнее протона и, следовательно, не может быть его частью. Кроме того, протон в этой реакции оказывается как бы частью самого себя. Однако в микромире часть может оказаться не менее сложной и даже более массивной, чем целое. Это связано с тем, что говорить об отдельных частях любой системы можно только в том случае, когда связь этих частей друг с другом гораздо слабее, чем внутренняя связь самих частей. Например, в атомах и даже в атомных ядрах энергия связи отдельных компонентов (электронов и ядер - в атомах, нуклонов - в ядрах) значительно меньше, чем энергия покоя этих компонентов, и это позволяет нам говорить, что атом состоит из ядра и электронов, а атомное ядро - из нуклонов. В самих же нуклонах и других элементарных частицах энергия связи их «частей» сравнима или даже больше энергии покоя, так что «части» теряют свою индивидуальность, а утверждение о том, что какая-то частица состоит из других частиц становится весьма условным. Вообще идея механической делимости объектов в области микромира теряет смысл. Опыт показывает, что, являясь нестабильными, большинство элементарных частиц быстро распадается на несколько других, те в свою очередь также распадаются и конца этому процессу нет. Получается как бы единая крепко сплетенная сеть, где нет ни начала, ни конца и все частицы являются одновременно и элементарными, и сложными.

В-третьих, для объяснения поведения этих частиц известных к тому времени законов электромагнетизма и гравитации оказалось недостаточно и к ним пришлось добавить еще два специфических для микромира взаимодействия: сильное и слабое. Таким образом, в настоящее время известны четыре фундаментальных (т.е. не сводящихся друг к другу) взаимодействия, которые и определяют иерархию элементарных частиц. Рассмотрим эти взаимодействия в порядке уменьшения их «интенсивности».

Сильное взаимодействие имеет характер притяжения между большинством элементарных частиц, в частности, оно обеспечивает связь нуклонов (протонов и нейтронов) в атомных ядрах; проявляется только на очень малых расстояниях, сравнимых с размерами ядер (~ 10-13 см), т.е. является короткодействующим и на этих расстояниях существенно (более чем в сто раз) превосходит электромагнитное взаимодействие.

Электромагнитное взаимодействие обусловливает связь заряженных частиц в атомах и молекулах; осуществляется на значительных расстояниях, описывается известными законами электричества и магнетизма.

Слабое взаимодействие проявляется при распаде некоторых квазистабильных элементарных частиц (например, при b-распаде нейтрона: n0 ® p+ + e- +`ne, где p+ - протон, е- - электрон, `nе - электронное антинейтрино); осуществляется на очень малых расстояниях (~ 10-16 см); играет важную роль в термоядерных реакциях, поэтому активно участвует в эволюции звезд и других космических объектов.

Наконец, гравитационное взаимодействие является самым универсальным, так как осуществляется между всеми материальными объектами. Оно действует на очень больших расстояниях (как и электромагнитное), однако, в силу своей малости, играет несущественную роль в микромире вплоть до расстояний порядка 10-33 см (так называемая «планковская длина»). Ожидается, что на столь малых расстояниях гравитационное взаимодействие становится «равноправным» участником событий. С другой стороны, гравитация является основным фактором, определяющим поведение объектов мегамира.

Все эти взаимодействия в масштабах микромира имеют по своей природе квантовый характер. Это означает, что в соответствии с современными представлениями, каждое из них осуществляется путем обмена квантами соответствующего поля. Например, кванты электромагнитного поля - фотоны - представляют собой дискретные «порции» с энергией Е, пропорциональной частоте n колебаний этого поля: Е = hn, где h - постоянная Планка. Такой подход к описанию взаимодействий фактически представляет собой диалектические единство концепций близкодействия и дальнодействия. Действительно, наличие «посредника», «переносчика» взаимодействия напоминает нам о концепции близкодействия. В то же время обмен дискретными порциями энергии фактически «реанимирует» идею дальнодействия, лишая ее, правда, гипотезы о мгновенной скорости передачи взаимодействия.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.