Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Механизм токсического действия. Механизм действия нитро- и аминосоединений неразрывно связан с их метаболизмом



Механизм действия нитро- и аминосоединений неразрывно связан с их метаболизмом. По-видимому, образование метгемоглобина является следствием активации свободнорадикальных процессов в эритроцитах, «запускаемых» метаболитами нитро- и аминосоединений, включающимися в клетках-мишенях в окислительно-восстановительный цикл.

Свободные радикалы, образующиеся в процессе восстановления нитрозогруппы в гидроксиламиногруппу, хинонимины, возникающие при окислении аминофенолов и др., могут активировать молекулярный кислород путем одновалентного восстановления последнего до супероксид-аниона. Супероксид при взаимодействии с водой с большой скоростью дисмутирует с образованием перекиси водорода (Н2О2). Действие супероксидного радикала и перекиси водорода на железо гемоглобина приводит к его окислению (метгемоглобинообразование).

Очевидно, что если действие ксенобиотика продолжается в течение достаточно длительного времени, механизмы антирадикальной защиты истощаются и происходит значительное повреждение гемоглобина. Наряду с другими компонентами противорадикальной защиты в эритроцитах отравленных снижается уровень восстановленного глутатиона. Поскольку этот трипептид выполняет функцию стабилизатора эритроцитарных мембран, истощение его пула сопровождается развитием гемолиза.

Полагают, что с учетом скорости накопления каждого из упомянутых выше активных метаболитов в организме и их активности относительное значение фенилгидроксиламина, о-аминофенола и п-аминофенола в образовании метгемоглобина при отравлении, в частности, анилином может быть оценено, соответственно, как 100:4:1.

Кроме метгемоглобинообразующих свойств, метаболиты анилина и нитробензола рассматриваются и как мутагены, тератогены и канцерогены, вызывающие рак мочевого пузыря.

Считается, что бластомогенный и мутагенный эффекты, а также специфические очаговые некрозы печени, развивающиеся под влиянием данных веществ, обусловлены ковалентным связыванием их активных радикалов с молекулами ДНК, белками гепатоцитов, а также элементами микросомальной системы клеток.

Алкоголь значительно усиливает острую токсичность анилина и его производных. Это связывают со способностью этилового спирта индуцировать образование активных метаболитов (преимущественно N-гидроксилирование) в первой фазе биопревращения анилина и угнетать вторую фазу его метаболизма.

Нитриты

Нитриты — это производные азотистой кислоты: либо ее соли (неорганические производные: азотистокислый натрий), либо простые эфиры спиртов, содержащие в молекуле одну или несколько нитритных групп (R-O-N=O) (органические производные изопропилнитрит, бутилнитрит).

По механизму действия и картине острого отравления различные представители группы во многом сходны. Однако неорганические производные азотистой кислоты обладают более выраженной метгемоглобинообразующей активностью.

Органические производные обладают более сильным расслабляющим действием на стенки кровеносных сосудов.

Азотистокислый натрий

Физико-химические свойства

Бесцветные или желтоватые кристаллы хорошо растворимы в воде (при 20°С в 100 г воды растворяется 82 г вещества), солоноватые на вкус. Применяется в производстве органических красителей, в пищевой, текстильной промышленности, производстве резины, гальванотехнике. Поскольку по органолептическим свойствам вещество чрезвычайно похоже на поваренную соль, не исключено его использование в качестве диверсионного агента.

Токсичность

Прием человеком менее 3 г вещества с зараженной пищей вызывает головокружение, рвоту, бессознательное состояние и может закончиться смертью.

Токсикокинетика

Основной путь поступления токсиканта в организм — через рот с зараженной водой и пищей. Вещество быстро всасывается в кровь в слизистой оболочке желудочно-кишечного тракта и равномерно распределяется в организме. Некоторое количество вещества окисляется до нитратов (затем вновь восстанавливается до NO2 и при участии редуктаз вступает в окислительно-восстановительный цикл), часть — восстанавливается до оксида азота, часть — превращается в нитрозамины. Значительная часть токсиканта выводится с мочой в неизмененном виде. Определенную опасность (хотя и меньшую, чем NaNO2) представляют также нитраты — производные азотной кислоты и, в частности, азотнокислый натрий (NaNO3). Попав в организм, нитраты могут превращаться в нитриты. В печени это превращение активирует глутатионзависимая нитратредуктаза. Обитающие в желудочно-кишечном тракте микроорганизмы (Eschenchia coh, Pseudomonas aurogenosa и др.) также обладают способностью восстанавливать нитраты до нитритов.

Изопропилнитрит

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.