Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Круговорот и баланс азота в земледелии



 

Образовавшиеся в почве минеральные соединения азота не накапливаются в ней в больших количествах, так как потребляются растениями, а также используются микроорганизмами и частично снова превращаются в органическую форму. Внесение азотных удобрений не только значительно увеличивает содержание азота в почве, но и способствует усилению минерализации органического азота. Как показали исследования, проведенные с использованием стабильного изотопа азота 15N в полевых условиях растения усваивают из удобрений 40 – 50 % азота. В органической форме в почве закрепляется 10 – 20 % азота нитратных и 30 – 40 % аммиачных и аммонийных соединений и мочевины. Превращение азота в органические формы резко возрастает при запашке в почву органических веществ с низким содержанием азота (пожнивные растительные остатки, солома злаковых и соломистый навоз). Закрепившийся азот медленно минерализуется и слабо усваивается растениями, поэтому действие азотных удобрений в последействии незначительно – 2 – 3 %.

Для закрепления нитратного азота в почве особое значение имеет биологическое его поглощение (микроорганизмами, растениями). Нитраты могут вымываться из корнеобитаемого слоя осадками, дренажными водами. Из связных по гранулометрическому составу почв обычно вымывается с 1 га 3 – 5 кг, из легких, особенно если это пар, – до 20 – 30 кг. В основном теряется газообразный азот. Потери азота из аммиачных удобрений составляют около 20 %, нитратных – до 30 % от внесенного.

Для снижения потерь азота почвы и удобрений из-за денитрификации и вымывания нитратов используются ингибиторы, которые тормозят нитрификацию и сохраняют минеральный азот почвы и удобрений в аммонийной форме.

При поверхностном внесении твердых аммонийных удобрений и мочевины могут теряться и аммиачные формы азота. Однако при своевременной и правильной заделке удобрений в почву значительных потерь удается избежать.

Азот в почве пополняется за счет органических и минеральных удобрений, биологического азота, азота атмосферных осадков, азота, поступившего с семенами. В настоящее время в Беларуси с органическими удобрениями в почву возвращается только 35 – 40 % азота, выносимого возделываемыми культурами.

Связывание молекулярного азота воздуха происходит двумя способами. Небольшое количество связанного азота образуется в атмосфере во время грозовых разрядов и в форме азотистой и азотной кислот поступает в почву с осадками (до 3 – 5 кг на 1 га). Второй способ – усвоение азота воздуха свободноживущими азотфиксирующими микроорганизмами почвы (азотобактер, клостридиум), ризосферными микроорганизмами (ассоциативная азотфиксация), клубеньковыми бактериями, живущими на корнях бобовых. На основе азотбактера (свободноживущего азотфиксатора) методами генной инженерии в Институте генетики и цитологии НАН Республики Беларусь создан бактериальный препарат ризофил. В государственных испытаниях этот препарат при замене 21 % азота удобрений биологически фиксированным азотом повышал урожайность томатов и огурцов в среднем на 26 %.

Объемы биологического азота, продуцируемого свободноживущими микроорганизмами почвы, весьма значительны и в зависимости от количества органических удобрений и корневых и пожнивных остатков растений, почвенно-климатических условий могут составлять 15–50 кг/га и более. Основная масса биологического азота остается в почве и включается в состав гумуса.

Высокие дозы минеральных удобрений (более 60 кг/га) резко снижают продуктивность свободноживущих микроорганизмов. Депрессия длится 2–2,5 мес после внесения удобрений, затем уровень азотфиксации восстанавливается. В почвах с высоким содержанием гумуса (больше 2,5%) депрессия не наблюдается.

Улучшить азотное питание небобовых культур (кукуруза, пшеница, ячмень, многолетние злаковые травы и др.) способны ассоциативные азотфиксаторы. Эти микроорганизмы размещаются в верхних слоях корневой системы растений и в благоприятных условиях могут обеспечить до 45 % потребности растений в азоте. Оптимизируя свойства почвы и внося органические удобрения, продуктивность природной популяции ассоциативных азотфиксаторов (без внесения их в виде бактериальных удобрений) можно повысить в 2–4 раза. Бактериальные удобрения на основе ризосферных азотфиксаторов (Ризобактерин С, Азобактерин) в опытах Института почвоведения и агрохимии НАН Беларуси, кафедры агрохимии УО «БГСХА» в среднем за три года дали прибавку урожайности ячменя 3 – 10 ц/га, яровой пшеницы 3 – 5 ц/га, сена многолетних трав на 10 – 20 %. В ряде случаев обработка семян ячменя препаратом на основе азоспириллы была эквивалентна действию 30–60 кг/га минерального азота.

Значительно большее, чем ассоциативные азотфиксаторы, значение для пополнения почвы азотом имеют клубеньковые бактерии, живущие в симбиозе с бобовыми растениями. Интенсивность симбиотической азотфиксации зависит от вида и урожайности бобовых растений. Так, клевер при хорошем урожае может накапливать 150 – 250 кг азота, однолетние зернобобовые – 150 – 200, люцерна – 250 – 350 кг на 1 га. Примерно треть связанного бобовыми азота остается в пожнивных и корневых остатках и после их минерализации может использоваться культурами, следующими в севообороте после бобовых. По данным Института почвоведения и агрохимии НАН Беларуси, люцерна на каждый ц основной продукции (зеленая масса) усваивает из атмосферы за вегетацию 0,40 кг, клевер – 0,35, люпин (зерно) – 5,0, горох, пелюшка, соя (зерно) – 2,5, многолетние бобово-злаковые смеси на пашне (зеленая масса) – 0,20 кг азота.

Процесс связывания молекулярного азота из атмосферы азотфиксирующими микроорганизмами выяснен еще не в полной мере. В настоящее время большинство исследователей придерживается мнения, что восстановительный путь фиксации молекулярного азота (через аммиак) при различных вариантах промежуточных этапов является наиболее обоснованным. Основным ферментом, осуществляющим процесс азотфиксации является нитрогеназа. У бобовых культур нитрогеназа находится в клубеньковых бактериях, приобретающих внутри клубенька форму бактероидов.

У большинства микроорганизмов нитрогеназа инактивируется кислородом, причем Fe-белок более чувствителен к кислороду, чем Mo-Fe-белок. Для реакции восстановления азота необходимо наличие нитрогеназы, АТФ, источника электронов и ионов Mg2+. Процесс биологической фиксации азота сопряжен с гидролизом АТФ, при этом образуется АТФ с ионами магния. Большинство исследователей считают, что на фиксацию 1 молекулы азота затрачивается 15 молекул АТФ. Предложена гипотетическая схема ступенчатого восстановления азота до аммиака через диимид и гидразин (Харди) и другие гипотезы.

Биохимия нитрогеназы окончательно неясна до тех пор, пока не будут описаны реакции на молекулярном уровне. Недостаточно изучено, как энергия от гидролиза АТФ сочетается с переносом электронов к нитрогеназе, как происходит комплексование и восстановление молекулы азота, не до конца ясен механизм участия в этом процессе металлов, в том числе молибдена.

К настоящему времени уже сложилось вполне определенное представление о процессах, происходящих в биологических системах при фиксации молекулярного азота. Однако необходимо дальнейшее изучение биологических восстановителей азота, промежуточных продуктов фиксации, локализации этого процесса и его структурной организации. Проблема фиксации молекулярного азота азотфиксирующими микроорганизмами комплексная: она затрагивает микробиологию, агрономическую и биологическую химию, физику и химию, молекулярную биологию, а также молекулярную генетику.

Для повышения азотфиксирующей способности бобовых культур применяют бактериальное удобрение Сапронит. По данным Института почвоведения и агрохимии НАН Беларуси, обработка семян бобовых Сапронитом дает прибавку зерна бобовых культур (люпина, гороха, вики, кормовых бобов) 1,5–3 ц/га, сена клевера – 2–5, люцерны – 5–12 ц/га. Более эффективен Сапронит на легких почвах, в которых менее активна природная популяция азотфиксаторов.

Активизации биологической азотфиксации способствуют известкование кислых почв, оптимизация фосфорного и калийного питания растений, внесение физиологически оправданных доз минерального азота или его полное исключение. Оптимальными для люцерны, клевера, гороха, вики, кормовых бобов является пятая группа кислотности, для люпина и сераделлы –четвертая. Наиболее эффективен Сапронит на почвах четвертой–пятой групп по обеспеченности фосфором. Максимальную прибавку от Сапронита бобовые культуры давали при внесении 20–40 кг/га минерального азота, при увеличении дозы до 60 кг/га она была вдвое меньше и практически отсутствовала при внесении 90–120 кг/га азота. Поэтому при интенсивной системе земледелия внесение азотных удобрений под бобовые культуры, как правило, не рекомендуется.

Определенный вклад в обеспечение азотного питания сельскохозяйственных культур вносит несимбиотическая азотфиксация. Для дерново-подзолистых пахотных почв Беларуси средний норматив, по данным Института почвоведения и агрохимии НАН Беларуси, составляет 15 кг/га в год.

Несмотря на значительную фиксацию азота бобовыми культурами, в среднем этот источник азотного питания пока невелик – 4 – 6 кг/га в расчете на всю посевную площадь страны. Небольшое количество азота (около 3 кг/га) поступает с семенами. Суммарное поступление азота из всех источников не компенсирует выноса его урожаями сельскохозяйственных культур и потерь из почвы из-за вымывания и денитрификации. Поэтому для получения высоких урожаев сельскохозяйственных культур и повышения качества продукции большое значение имеет внесение в почву минеральных азотных удобрений.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.