Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Арматура для железобетонных конструкций



 

· Арматурув железобетонных конструкциях устанавливают для восприятия растягивающих напряжений или усиления сжатого бетона. В качестве арматуры применяют в основном сталь. В ряде случаев возможно применение и других материалов, например стеклопластика, обладающего высокой прочностью, химической стойкостью. Однако этот материал значительно дороже стали и его целесообразно применять лишь в конструкциях, к которым предъявляются специальные требования коррозионной стойкости, электроизолирующей способности и т.п.

 

Рис. 1.4. Расположение арматуры в изгибаемых (а, б) и сжатых (в) элементах: 1—рабочая арматура; 2—конструктивная арматура; 3—монтажная арматура.

 

Виды арматуры. По назначению различают арматуру рабочую, устанавливаемую по расчету, конструктивную и монтажную, применяемые из конструктивных и технологических соображений. Конструктивная арматура воспринимает не учитываемые расчетом усилия от усадки бетона, изменения температуры, равномерно распределяет усилия между отдельными стержнями и т. п.; монтажная обеспечивает проектное положение рабочей арматуры, объединяет ее в каркасы и т.п. (рис. 1.4).

По способу изготовления различают арматуру горячекатаную (получаемую способом проката) — стержневую и холоднотянутую (изготовляемую путем вытяжки в холодном состоянии) — проволочную.

По профилю поверхности различают арматурные стали гладкие и периодического профиля (рис. 1.5). Последние обладают лучшим сцеплением с бетоном и в настоящее время являются основной арматурой.

По способу применения арматуру делят на напрягаемую и ненапрягаемую.

Рис. 1.5. Арматура периодического профиля:

а, б — стержневая; в — проволочная

 

Горячекатаная и холоднотянутая арматура называется гибкой. Помимо нее в конструкциях в ряде случаев применяют жесткую (несущую) арматуру из прокатных или сварных двутавров, швеллеров, уголков и т. п.

Физико-механические свойства. Эти свойства арматуры зависят от химического состава, способа производства и обработки. В мягких сталях содержание углерода составляет обычно 0,2...0,4 %. Увеличение количества углерода приводит к повышению прочности при одновременном снижении деформативности и свариваемости. Изменение свойств сталей может быть достигнуто введением легирующих добавок. Марганец, хром повышают прочность без существенного снижения деформативности. Кремний, увеличивая прочность, ухудшает свариваемость.

Повышение прочности может быть достигнуто также термическим упрочнением и механической вытяжкой. При термическом упрочнении вначале осуществляют нагрев арматуры до 800...900°С и быстрое охлаждение, а затем нагрев до 300...400°С с постепенным охлаждением. При механическом вытягивании арматуры на 3...5 % вследствие структурных изменений кристаллической решетки — наклепа сталь упрочняется. При повторной вытяжке (нагрузке) диаграмма деформирования 4 будет отличаться от исходной (рис. 1.6), а предел текучести существенно повысится.

· Основные механические свойства сталей характеризуются диаграммой «напряжения — деформации», по­лучаемой путем испытания на растяжение стандартных образцов. Все арматурные стали по характеру диаграмм «σ - ε» подразделяются на (рис. 1.6): 1) стали с явно выраженной площадкой текучести (мягкие стали); 2) стали с неявно выраженной площадкой текучести (низколегированные, термически упрочненные стали); 3) стали с линейной зависимостью «σ - ε» почти до разрыва (высокопрочная проволока).

· Основные прочностные характеристики: для сталей вида 1 — физический предел текучести σy; для сталей видов 2 и 3 — условный предел теку­чести σ0,2, принимаемый равным напряжению, при котором остаточные деформации составляют 0,2 %, и условный предел упругости σ0,02, при котором остаточные деформации 0,02 %. Помимо этого характеристиками диаграмм являются предел прочности σsu (временное сопротивление) и предельное удлинение при разрыве, характеризующее пластические свойства стали. Малые предельные удлинения могут послужить причиной хрупкого обрыва арматуры под нагрузкой и разрушения конструкции; высокие пластические свойства сталей создают благоприятные условия для работы железобетонных конструкций (перераспределение усилий в статически неопределимых системах, при интенсивных динамических воздействиях и т. п.).

В зависимости от типа конструкций и условий эксплуатации наряду с основной характеристикой — диаграммой «σ - ε» в ряде случаев необходимо учитывать другие свойства арматурных сталей: свариваемость, реологические свойства, динамическое упрочнение и т. п.

Рис. 1.6. Диаграммы деформирования арматурных сталей:

1 — мягких: 2 — низколегированных и термически упрочненных;

3 — высокопрочной проволоки; 4 — механически упрочненных вытяжкой

 

· Под свариваемостью понимают способность арматуры к надежному соединению с помощью электросварки без трещин, каверн и других дефектов в зоне сварного шва. Хорошей свариваемостью обладают горячекатаные малоуглеродистые и низколегированные стали. Нельзя сваривать термически упрочненные стали (кроме специальных «свариваемых») и упрочненные вытяжкой, так как при сварке утрачивается эффект упрочнения.

· Реологические свойства характеризуются ползучестью и релаксацией. Ползучесть арматурных сталей проявляется лишь при больших напряжениях и высоких температурах. Более опасна релаксация—падение напряжений во времени при неизменной длине образца (отсутствии деформаций). Релаксация зависит от химического состава стали, технологии изготовления, напряжения, температуры и др. Она наиболее интенсивно протекает в первые часы, но может продолжаться длительное время. Учет ее важен при расчете предварительно напряженных конструкций.

· Усталостное разрушение наблюдается при действии многократно повторяющейся нагрузки при пониженном сопротивлении и носит хрупкий характер. Прочность при многократно повторной нагрузке (предел выносливости) арматуры зависит от числа повторений нагрузки n и характеристики цикла нагружения ρs.

· Динамическое упрочнение имеет место при действии кратковременных (t ≤ 1с) динамических нагрузок большой интенсивности (взрывных, сейсмических). Превышение динамического предела текучести σy,d над статическим σy объясняется запаздыванием пластических деформаций и зависит от химического состава стали и скорости деформации. Для мягких сталей σy,d = (1,2...1,3) σy.

Классификация арматуры. Все арматурные стали разделяют на классы, объединяющие стали с одинаковыми прочностными и деформативными свойствами. При этом к одному классу могут относиться стали, отличающиеся по химическому составу, т. е. разных марок.

· Стержневая арматура обозначается буквой А и римской цифрой и бывает: горячекатаная — гладкая класса A-I; периодического профиля классов А-II, А-III, A-IV, AV и А-VI; термически и термомеханически упрочненная — периодического профиля классов Ат-III, Aт-IV, Aт-V, Aт-VI и механически упрочненная класса А-III в.

Для дополнительной характеристики стержневой арматуры, необходимой при использовании ее в определенных условиях, к обозначениям классов вводятся индексы. Индекс «С» в обозначении термически и термомеханически упрочненной арматуры указывает на возможность соединения стержней с помощью сварки (At-IVC); «К» — на повышенную стойкость к коррозии под напряжением (Ат-IVK); «СК» — на возможность сварки и повышенную стойкость к коррозии под напряжением (Ат-VCK). Индекс «с» употребляется для арматуры, рекомендуемой к использованию в условиях низких температур, например класса Ас-II из стали марки 10ГТ.

Рис. 1.7. Арматурные изделия:

1 — пучок; 2 — анкер; 3 — вязальная проволока; 4 — коротыш

 

· Холоднотянутая проволочная арматура обозначается буквой В и римской цифрой и подразделяется на обыкновенную арматурную проволоку рифленую (периодического профиля) класса Вр-I и гладкую класса B-I, а также высокопрочную гладкую проволоку класса В-II и периодического профиля класса Вр-II.

Основные прочностные и деформативные характерис­тики различных арматурных сталей приведены в табл. 2.2. Сортамент стержней и проволочной арматуры дан на форзаце. Приведенные в сортаменте диаметры горячекатаной арматурной стали периодического профиля соответствуют номинальному диаметру равновеликих по площади круглых гладких стержней.

Арматурные изделия. Для ускорения производства работ ненапрягаемая гибкая арматура (отдельные стержни) объединяется в каркасы и сетки, в которых стержни в местах пересечений соединяются контактной точечной сваркой или вязкой. В отдельных случаях допускается применение дуговой сварки.

· Сварные каркасы (рис. 1.7, а) образуются из продольных и поперечных стержней. Продольные рабочие стержни устраивают в один или два ряда. Приварка продольных стержней к поперечным с одной стороны более технологична, чем с двух.

Плоские каркасы обычно объединяются в пространственные, которые должны обладать достаточной жесткостью для возможности складирования, транспортирования и сохранения проектного положения в форме.

При назначении диаметров продольных и поперечных стержней необходимо учитывать условия технологии сварки во избежание пережога более тонких стержней:

Диаметры продольных

стержней, мм................ 3...10 12...16 18...20 22 25...32 36...40

Наименьшие диаметры

поперечных стержней, мм .. 3 4 5 6 8 10

· Сварные сетки (ГОСТ 8478—81) выполняют из сталей классов B-I, Bp-I, A-I, A-II, А-III.

● Сварные сетки можно конструировать, предусматривая их последующее сгибание в одной плоскости на специальных станках. Сетки бывают плоские и рулонные, с продольной и поперечной рабочей арматурой. Рулонные сетки с продольной рабочей арматурой изготовляют при диаметре продольных стержней не более 5 мм (рис. 1.7,б). При диаметре более 5 мм применяют сетки с поперечной рабочей арматурой (рис. 1.7, в) или плоские. Максимальный диаметр поперечных стержней плоских и рулонных сеток 8 мм. Длина сетки в рулоне 50...100 м, поэтому для использования в конструкциях сетки разрезают по месту.

· Арматурные канаты и пучки. Армирование конструкции отдельными высокопрочными проволоками (вследствие их большого числа) трудоемко и часто приводит к излишнему развитию сечений элементов. В связи с этим проволоку укрупняют в канаты и пучки. Канаты (рис. 1.7, г) обычно изготовляют из 7 или 19 проволок одного диаметра (обозначение К-7 или К-19), навивая на центральную прямолинейную проволоку остальные в один или несколько слоев. Диаметр проволок канатов К-7 от 2 до 5 мм. Расчетные характеристики канатов приведены в табл. 2.2. Пучки состоят из параллельных высокопрочных проволок (14, 18, 24 шт.) или канатов (рис. 1.7,д). Пучки могут иметь по концам анкеры, а по длине обматываются мягкой проволокой.

Рис. 1.8. Соединения арматуры

Соединения арматуры [6]. Для соединения арматурных стержней по длине в заводских условиях реко­мендуется применять контактную стыковую сварку (рис. 1.8, а) на специальных сварочных машинах. Для соединения встык при монтаже используют дуговую сварку. При этом в случае свариваемых стержней d ≥ 20 мм применяют дуговую ванную сварку в инвентарных (медных) формах (рис. 1.8, б). При d < 20 мм дуговую сварку осуществляют с накладками с четырьмя фланговыми швами (рис. 1.8, в). Допускается также сварка односторонними удлиненными швами (рис. 1.8, г). Стык рабочих стержней внахлестку без сварки применяют при d ≤ 36 мм (рис. 1.8, д) в тех местах, где прочность арматуры используется не полностью. Стыки внахлестку не допускаются в растянутых элементах. В местах стыка обязатель­но устанавливают дополнительные хомуты. Во всех случаях стыки следует делать вразбежку по длине элемента. Стыки внахлестку сварных сеток в рабочем направлении, так же как и стержней, должны иметь длину перепуска l>lan, определяемую по формуле (1.12). Длину нахлестки сетки в направлении распределительной арматуры принимают 50..100 мм в зависимости от диаметра.

Применение арматуры в железобетонных конструкциях. Выбор класса арматурных сталей производят в зависимости от типа конструкции, наличия предварительного напряжения, условий возведения и эксплуатации здания.

В качестве ненапрягаемой рабочей арматуры приме­няют в основном сталь класса A-III и проволоку класса Bp-I (B-I) в сетках и каркасах. Арматуру классов A-II и A-I допускают в качестве поперечной арматуры, а в качестве продольной — только при соответствующем обосновании (например, если прочность стали A-III не может быть полностью использована из-за чрезмерного раскрытия трещин и прогибов). Стержневую арматуру класса A-IV и выше применяют в качестве продольной арматуры только в вязаных каркасах.

В качестве напрягаемой рабочей арматуры при нормальных условиях эксплуатации и длине железобетонных элементов до 12 м используют преимущественно стаяли классов Ат-VI и Aт-V, а также В-II, Вр-II, К-7, К-19, A-IV, A-V, A-VI, А-IIIв, для элементов длиной более 12 м — главным образом арматурные канаты, пучки, проволоку классов В-II, Вр-II, а также свариваемую арма­туру A-VI, A-V, A-IV и А-IIIв.

 

Железобетон

 

Сцепление арматуры с бетоном. Сцепление арматуры с бетоном является одним из фундаментальных свойств железобетона, которое обеспечивает его существование как строительного материала. Сцепление обеспечивается: склеиванием геля с арматурой; трением, вызванным давлением от усадки бетона; зацеплением за бетон выступов и неровностей на поверхности арматуры. Выявление влияния каждого из этих факторов затруднительно и не имеет практического значения, так как они действуют совместно. Однако наибольшую роль в обеспечении сцепления (70...80 %) играет зацепление за бетон выступов и неровностей на поверхности арматуры (рис. 1.9, а).

При выдергивании стержня из бетона (рис. 1.9,6) усилия с арматуры на бетон передаются через касательные напряжения сцепления τbd, которые распределяются вдоль стержня неравномерно. Наибольшие их значения τbd,max действуют на некотором расстоянии от торца элемента и не зависят от длины заделки стержня в бетонеlan. Для оценки сцепления используют средние напряжения на длине заделки

 

Рис. 1.9. Сцепление арматуры с бетоном

 

Для обычных бетонов и гладкой арматуры τbd,m = 2,5...4 МПа, а для арматуры периодического профиля τbd,m ≈7 МПа. С увеличением прочности бетона τbd,m возрастает. Выражая продольное усилие через напряжение в арматуре (см. рис. 1.9, б), из формулы (1.10) получают

 

 

Из формулы (1.11) видно, что длина заделки, при которой обеспечивается сцепление (зона анкеровки), должна быть тем больше, чем выше прочность арматуры и диаметр стержня, и может быть уменьшена при увеличении τbd,m. Для уменьшения 1an (в целях экономии металла) следует ограничивать диаметр растянутой арматуры, повышать класс бетона и применять арматуру периодического профиля.

Нормами проектирования значение сцепления не устанавливается, но даются рекомендации по конструированию, которые обеспечивают надежное сцепление арматуры с бетоном.

Анкеровка арматуры в бетоне. Анкеровка — это закрепление концов арматуры внутри бетона или на его поверхности, способное воспринять определенное усилие. Анкеровка может осуществляться либо силами сцепления, либо специальными анкерными устройствами на концевых участках, либо теми и другими совместно.

Анкеровка арматуры периодического профиля обеспечивается силами сцепления. Анкерные устройства на концах такой арматуры применяют в редких случаях. Для гладкой круглой арматуры, наоборот, сцепление недостаточно, и устройство крюков на концах стержней или приварка поперечных стержней на концевых участках, как правило, обязательны.

Ненапрягаемую арматуру периодического профиля заводят за нормальное к продольной оси элемента сечение, в котором она учитывается с полным расчетным сопротивлением, на длину зоны анкеровки

где Δλan — коэффициент запаса; ωan— коэффициент условий работы; в соответствии с нормами [1] lan,min = 20...25 см. Формула (1.12) - эмпирическая.

Усадка бетона в железобетонных конструкциях. Стальная арматура вследствие сцепления ее с бетоном является внутренней связью, препятствующей свободной усадке бетона при твердении на воздухе и свободному набуханию бетона при твердении в воде.

Стесненная деформация усадки бетона в железобетонном элементе приводит к возникновению начальных напряжений: растягивающих в бетоне, сжимающих в арматуре. При достаточно высоком содержании арматуры в бетоне элемента могут возникнуть усадочные трещины.

Усадке бетона в статически неопределимых железобетонных конструкциях препятствуют лишние связи. В таких системах усадка рассматривается как внешнее воздействие (подобное температурному), вызывающее появление усилий в элементах (см. рис. 11.4). Средняя деформация усадки равна 15·10-5, что равносильно понижению температуры на 15°С (так как коэффициент линейной температурной деформации αbt≈1·10-5). Это позволяет заменить расчет на действие усадки расчетом на температурное воздействие. Отрицательное влияние усадки в этом случае может быть снижено путем устройства деформационных швов, которые обычно совмещают с температурными и называют температурно-усадочными.

В предварительно напряженных элементах усадка бетона также оказывает отрицательное влияние, приводя к уменьшению предварительного напряжения в арматуре.

Ползучесть бетона в железобетонных конструкциях. Арматура в железобетонных конструкциях, являясь, как и при усадке, внутренней связью, препятствует свободной деформации ползучести в бетоне. Вследствие сцепления арматуры с бетоном при продолжительном действии нагрузки ползучесть приводит к перераспределению напряжений между арматурой и бетоном. С течением времени напряжения в бетоне уменьшаются, в арматуре элементов без предварительного напряжения возрастают. Этот процесс происходит непрерывно, пока деформации ползучести не достигнут своего предельного значения.

В зависимости от вида железобетонных конструкций и напряженного состояния ползучесть может оказывать положительное или отрицательное влияние на их работу. В коротких центрально сжатых элементах ползучесть оказывает положительное влияние, обеспечивая более полное использование прочностных свойств арматуры. В гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов и снижение несущей способности. В изгибаемых элементах ползучесть приводит к увеличению прогибов, в предварительно напряженных железобетонных конструкциях — к потерям предварительного напряжения. В статически неопределимых системах ползучесть играет положительную роль, смягчая концентрацию напряжений и вызывая перераспределение усилий.

Коррозия железобетона и меры защиты от нее. Для обеспечения долговечности железобетонных конструкций необходимо принимать меры против развития коррозии бетона и арматуры. Коррозия бетона зависит от его прочности и плотности, свойств цемента и агрессивности среды. Коррозия арматуры вызывается недостаточным содержанием цемента или наличием в нем вредных добавок, чрезмерным раскрытием трещин, недостаточной толщиной защитного слоя. Коррозия арматуры может возникать независимо от коррозии бетона. Для уменьшения коррозии ограничивают агрессивность среды в процессе эксплуатации (отвод агрессивных вод, улучшение вентиляции помещений), применяют плотные бетоны на сульфатостойких и других специальных вяжущих, устраивают на поверхности бетона защитные покрытия, защитный слой необходимой трещины, ограничивают раскрытие трещин и т. д. При систематическом действии агрессивной среды производят расчет конструкций на это воздействие (см. § 15.5).

Защитный слой бетона. В железобетонных конструкциях арматуру следует располагать на некотором расстоянии от их наружной поверхности, чтобы вокруг нее образовался защитный слой. Защитный слой обеспечивает совместную работу арматуры с бетоном на стадиях изготовления, монтажа и эксплуатации конструкций, а также защиту арматуры от коррозии, высоких температур и других воздействий.

При назначении толщины защитного слоя учитывают вид и размеры конструкции, условия эксплуатации, диаметр и назначение арматуры (рабочая, распределительная) [1]. Так, для продольной рабочей арматуры толщина защитного слоя должна быть не менее диаметра стержня и не менее: в плитах и стенках толщиной h < 100 мм — 10 мм; толщиной h ≥ 100 мм, а также балках и ребрах с h <250мм — 15мм; в балках и ребрах h ≥ 250 мм и в колоннах — 20 мм; в блоках сборных фундаментов — 30 мм; для нижней арматуры монолитных фундаментов: при наличии бетонной подготовки — 35 мм, при ее отсутствии — 70 мм. Для поперечной и распределитель­ной арматуры защитный слой должен быть при h <250 мм — не менее 10 мм и при h > 250 мм — не менее 15 мм. Расстояние от концов продольной ненапрягаемой арматуры до торцов элементов должно быть 10...20 мм. Для конструкций, эксплуатируемых в агрессивных средах, при повышенной температуре или влажности толщина защитного слоя увеличивается на 10...20 мм.

Толщина защитного слоя бетона у концов предварительно напряженных элементов на длине зоны передачи напряжений (см. § 3.3) должна составлять для арматуры классов A-IV, А-IIIв и канатов не менее 2 d и для арматуры классов A-V, А-VI — не менее 3 d. Кроме того, эта величина на указанном участке должна быть для стержневой арматуры — не менее 40 мм и для канатов — не менее 20 мм.

 

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ:

1. Виды бетонов для железобетонных конструкций и области их применения. 2. Что представляет собой структура бетона, как она влияет на напряженное состояние бетонного образца?

3. Основные показатели качества бетона. С какой целью они вводятся?

Как нормируются?

4. Каковы расчетные характеристики прочности бетона?

5. Нарисуйте диаграммы «σ - ε» бетона при однократном кратковременном и длительном нагружениях. Укажите характерные участки на этих диаграммах. 6. Что такое ползучесть бетона? От чего она зависит?

7. Каковы значения предельных деформаций бетона при сжатии,

растяжении, изгибе?

8. Какими характеристиками связаны напряжения и деформации в пределах упругой и пластической работы? Какая зависимость существует

между ними?

9. Что представляет собой мера ползучести и характеристика ползучести

бетона?

10. Что такое усадка бетона, каковы причины ее возникновения?

Факторы, влияющие на усадку.

11. На примерах балки и колонны покажите рабочую и монтажную арматуру. 12. По каким признакам классифицируется арматура?

13. Нарисуйте диаграммы «σ - ε» для различных арматурных сталей

и укажите на них характерные точки.

14. Какие существуют способы упрочнения арматуры?

15. Классы арматурных сталей и применение их в железобетонных

конструкциях.

16. Виды арматурных изделий.

17. Способы соединения арматуры в заводских условиях и на монтаже.

18. Какими факторами обеспечивается сцепление арматуры с бетоном?

От чего зависит и как определяется длина зоны анкеровки?

19. Усадка бетона в железобетонных конструкциях и влияние

ее на напряженное состояние.

20. Ползучесть бетона в железобетонных конструкциях и ее влияние на

деформативность элементов.

21. Коррозия железобетона и меры защиты от нее.

22. Назначение и минимальные толщины защитного слоя.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.