Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Общие принципы визуализации медицинских изображений



ГЛАВА 1. ПРИНЦИПЫ И МЕТОДЫ ЛУЧЕВОЙ ДИАГНОСТИКИ

По современным данным, с помощью лучевых методов исследования ставится 60 – 80% всех первичных диагнозов.

Наиболее широко для визуализации непрозрачных и недоступных прямому наблюдению анатомических органов и систем используются электромагнитные излучения. В настоящее время известны электромагнитные излучения с длиной волны от десяти миллиардных долей миллиметра до сотен километров.

Широкая область электромагнитного излучения (0,001-10 нм) принадлежит рентгеновским лучам. Рентгенодиагностика – распространенный вид медицинской интроскопии. В настоящее время в медицине с помощью рентгеновских лучей получают около 90% всех визуализируемых изображений. Электромагнитное ионизирующее излучение, создаваемое радиоактивными веществами, называется гамма-излучением. Радиоизотопная диагностика, которая основана на визуализации изображений, формируемых гамма-квантами радионуклидов, широко применяется при функциональных исследованиях, диагностике ряда заболеваний.

Большие возможности содержат в себе резонансные эффекты, наблюдаемые в веществе – ядерный магнитный резонанс.

Широкое применение в медицине нашло звуковидение – совокупность методов и средств для получения оптического изображения ультразвукового поля, возникающего в результате взаимодействия упругих акустических волн и объекта. По периодам волн от 1 мм до 10 км ультразвук совпадает с радиодиапазоном.

Любое изображение приобретает смысл в результате его анализа зрительной системой и последующей интерпретации на основе сведений о характере взаимодействия физического поля и изучаемого объекта (рис.1.1).

 

Рис. 1.1. Схема получения изображения в медицинской радиологии. 1 − генератор волновой энергии; 2 − излучение; 3 − объект; 4 − модулированное после взаимодействия с объектом излучение; 5 − детектор; 6 − изображение.

В актах визуализации и анализа полученного изображения участвуют исследуемый объект, который модулирует параметры визуализируемого физического поля, система визуализации изображения и зрительный анализатор наблюдения (врача, оператора). Эта схема не соответствует радионуклидной визуализации, при которой источник гамма-излучения (радионуклиды) находится внутри тела человека.

Прошедшее отражение или испускаемое исследуемым объектом излучение промодулировано по одному или нескольким параметрам свойствами исследуемого объекта и содержит определенную информацию о нем. Пространственное распределение поля излучения объекта преобразуется устройством визуализации в аналогичное пространственное распределение светового потока, яркость или цвет которого изменяется от элемента к элементу изображения в зависимости от модулированных объектом параметров поля. Важно подчеркнуть, что при любом способе преобразования невидимого изображения в оптическое последнее не может содержать больше информации об объекте исследования, чем исходное изображение, сформированное в невидимом физическом поле. Входное и выходное изображения систем визуализации характеризуются следующими информативными параметрами: геометрическими размерами, детальностью, резкостью, подвижностью, контрастом, интенсивностью в белом (черном), отношением сигнал/шум и спектром (цветом) деталей изображения.

В лучевых изображениях в основном представлена морфологическая информация. Например, рентгеновский снимок грудной клетки дает в большинстве случаев информацию об анатомическом строении органов человека. Однако в части изображений содержится информация о физиологическом состоянии органов человека. Так, если пациент вдыхает воздух, содержащий нуклид 133Хе, то в этом случае вариации распределения нуклида в легких будут давать информацию о пространственных характеристиках воздушного потока в легких. Указанное распределение может быть визуализировано при помощи гамма-излучения, испускаемого ксеноном.

Как и любую систему передачи информации, систему лучевой диагностики можно представить в виде пространственно-временного фильтра, составленного из нескольких каскадов:

1. Каскада генерации излучения (рентгеновская трубка, радионуклид, пьезоэлектрический кристалл, источник радиоволн в магнитном поле);

2. Каскада модуляции, который представляется пространственно-временной неравномерностью исследуемого объекта;

3. Каскада детектирования (канала регистрации лучевого изображения);

4. Каскада преобразования в световое изображение и его диагностической оценки.

Представленным выше каскадам соответствуют процессы:

1. Генерация излучения.

2. Его взаимодействие с органами пациента.

3. Формирование лучевого изображения, преобразование последнего в световое.

4. Просмотр светового изображения и его профессиональная оценка.

Первые три процесса имеют физико-технический смысл, хотя некоторые из них связаны с физиологическими функциями органа или анатомической системой пациента; четвертый, помимо физических проблем, включает и физиологические, связанные со зрительным аппаратом лучевого диагноста. Пятый процесс – чисто профессиональный – заключается в том, чтобы из всего многообразия отображенных деталей в световом изображении выделить необходимые, руководствуясь опытом и знанием других клинических данных, поставить правильный диагноз.

В лучевой диагностике имеются аналоговые и цифровые изображения.

Аналоговые изображения несут информацию непрерывного характера, например, обычные рентгенограммы.

Цифровые изображения получают с помощью компьютера, они имеют ячеистую структуру (матрицу). Все цифровые технологии и методики на начальном этапе являются аналоговыми. Степень затемнения на рентгеновской пленке, интенсивность света на флюоресцентном экране, электрический ток в детекторах рентгеновского компьютерного томографа, радиодиагностического прибора, ультразвукового аппарата, приемной катушке магнитно-резонансного томографа − все это аналоговая ответная информация. При помощи специальных устройств (аналого-цифровых преобразователей) вышеуказанная аналоговая информация превращается в цифровую. Цифровое изображение формируется на дисплее, оно может трансформироваться в аналоговое изображение при помощи цифро-аналоговых преобразователей.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.