Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ГЛАВА 2 - КОНЦЕПЦИЯ ПОДРОБНО



 

Применение концепции: Чтобы понять, как работает EH Антенна, мы подробно обсудим Рисунок 1. Предположим, что имеется входная линия, которая соединяет источник с двумя цилиндрами, как показано на рисунке. Источник вызывает появление высокого напряжения между цилиндрами, таким образом, имеется большая область поля Е между двумя цилиндрами. На концах цилиндров, к которым подключена линия, напряжение очень высокое, и уменьшается до очень низкого значения, на открытых концах цилиндров. Это создает большое дифференциальное напряжение поперек каждого цилиндра. Поверхностное сопротивление цилиндров низко, таким образом, дифференциальное напряжение поперек каждого цилиндра вызывает большой ток, вертикально на цилиндрах. В свою очередь, этот ток создает большую область магнитного поля, окружающую цилиндры. Мы теперь имеем E и H поля, в соответствующей ориентации, готовые к взаимодействию. Если источник имеет соответствующий сдвиг по фазе, между приложенными напряжением и током, вызывая E и H поля, будет появляться излучение. Именно поэтому имеется потребность в 90 градусной задержке фазы в источнике.


Важно обратить внимание, что очень сильная область магнитного поля существует внутри антенны. Чтобы уменьшить потери из-за вихревых токов, цилиндры должны быть сделаны из цветного металла, (медь, алюминий). Если не использовать эти материалы, эффективность антенны будет снижена, ниже приемлемых уровней. Также, не должно находиться никакого ферромагнитного материала внутри цилиндров. Вихревые токи, могут образоваться в ферромагнитном материале, и будут нагревать его, таким образом, поглощая мощность, которая вычитается из излучения.

Согласующая цепь для задержки фазы: В ходе разработки антенны, были использованы три различных конфигурации этой цепи, чтобы создать соответствующее 90 градусное изменение фазы между двумя цилиндрами. Эти схемы согласования показаны на рисунках, со 2-го до 4-го.

Конфигурация L + L: Первая конфигурация была известна как L + L и показана на рисунке 2. Одна L секция обеспечивала - 45 градусный поворот фазы, а другая обеспечивала + 45 градусный поворот фазы. L/C соотношение выбрано так, чтобы обеспечить согласование импеданса. Эта конфигурация работает очень хорошо. Однако, даже если величина двух конденсаторов очень мала, конденсаторы должны выдерживать очень высокое ВЧ напряжение.


Конфигурация L + T: Вторая конфигурация использовала L + T согласование, как показано на рисунке 3. L секция преобразовывает сопротивление от 50 до 25 Ом с - 45 градусным поворотом фазы. T секция, преобразовывает сопротивление 25 Ом, к импедансу антенны и обеспечивает - 45 градусный поворот фазы. В этой конфигурации, конденсаторы могут быть расчитаны на низкое напряжение, но должны иметь способность пропускать через себя большие ВЧ токи.


Конфигурация ЗВЕЗДА: Третья и наиболее предпочтительная конфигурация показана на рисунке 4. Обратите внимание, что, катушка настройки подключена к источнику 50 Ом, и нижний конец катушки подключен к оплетке входного кабеля. Ее номинал такой, чтобы был сдвиг фазы на -90 градусов, между концами катушки. Так как эта конфигурация проста и имеет минимум компонентов, ей было дано название “ EH Антенна ЗВЕЗДА ”.

Хотя эффективность - одна и та же, для любой из трех конфигураций, только версия “ЗВЕЗДА” будет детально рассмотрена в этой книге, из-за простоты и экономии, для радиолюбителей. Потому что здесь применяется минимум компонентов, таким образом, обеспечивается большая надежность, в течение длительного срока. Версия “ЗВЕЗДА используется также для АМ радиовещания.


Схематическая Диаграмма: Диаграммы, показанные выше, обеспечивают простое представление главных физических компонентов. Полная схематическая диаграмма и физическое выполнение антенны показаны на рисунке 5, для конфигурации ЗВЕЗДА. Физическая конфигурация показана справа, и схематическая диаграмма показана слева. Схематическая диаграмма включает виртуальные компоненты (показаны штриховой линией), а также физические компоненты. Далее описывается каждый элемент в схематической диаграмме.


Емкость цилиндров (Сс): Цилиндры являются главными элементами антенны. Эквивалентно, это обозначено последовательно соединенными конденсатором и резистором, включенными между цилиндрами. Значение конденсатора - есть функция от размера цилиндров, и может быть вычислена следующим уравнением: C = 0.546 L/D + 2.06 D. C измеряется в Пф, где: L (длина одного цилиндра) и D (диаметр цилиндра) размерность в дюймах. Этого уравнения Вы не найдете в книгах. Оно было получено с помощью сложной электростатической программы в Германии, для расчета ЕН Антенны.

Сопротивление Излучения (RR): Виртуальное Сопротивление, показанное на диаграмме, называется Сопротивлением Излучения. Его нельзя измерить непосредственно, но оно является функцией эффективности EH Антенны. Это сопротивление существует только на частоте, где происходит соответствующее фазирование схемы. Оно не соответствует частоте, на которой возникает резонанс. (Это - восьмой уникальный параметр). Этот факт отделяет EH Антенну от стандартных антенн Герца, потому что это не согласуется со стандартной теорией. Это приводит к непониманию концепции EH Антенны, потому что никакая другая антенна не работает подобным образом. Это также является основной причиной для понижения эффективности, когда настройка произведена не правильно.

Эффективное Сопротивление Излучения может быть точно определено, измерением ширины полосы пропускания антенны, его значение вычисляется как RR = BW*Xc/F, где BW - + /- ширина полосы пропускания по уровню 3 dB, измеряется индикатором поля, Xc - емкостное реактивное сопротивление, расчетное или измеряемое емкостью цилиндров, и F - рабочая частота. Обратите внимание, что полоса пропускания - это функция от емкости между цилиндрами, таким образом, размер антенны диктует ширину полосы пропускания. (Это - девятый уникальный параметр).

Мы выяснили, что EH Антенна “ЗВЕЗДА” имеет сопротивление излучения, приблизительно 120 Ом. Это - другое отклонение от стандартной теории, в которой сопротивление излучения стандартных антенн изменяется как функция длины от частоты и других параметров, включая близость посторонних предметов и земли. Предметы, удаленные на расстояние более двух длин ЕН Антенны, не оказываю на нее влияния. С другой стороны, посторонние предметы, находящиеся на расстоянии менее ? длины волны от антенны Герца, очень сильно влияют на ее сопротивление излучения. Это один из признаков, говорящих о различных размерах полей ЕН и антенны Герца.

Фазирующая катушка (P Катушка): Маленькая индуктивность размещена чуть ниже верхнего цилиндра. Цель ее состоит в том, чтобы обеспечить небольшое изменение фазы (номинально 6 градусов) в проводе, идущем к верхнему цилиндру, чтобы предотвратить излучение от провода, поскольку он проходит через нижний цилиндр, и также предотвратить излучение от катушки настройки. Чтобы вычислять длину провода в этой катушке индуктивности, используйте следующее уравнение: L = 984/F*6/360*12, где L измеряется в дюймах и F - рабочая частота в МГц. Это уравнение вычисляет длину волны в футах, преобразует далее в 6 градусов поворота фазы, и затем все преобразуется в дюймы. Для удобства, уравнение может быть упрощено, и будет выглядеть приблизительно так: L = 200/F, с достаточной точностью.

Емкость Провода (Cw): Емкость провода, проходящего через нижний цилиндр, удивительно высока, по сравнению с емкостью между цилиндрами. Следовательно, она должна быть включена в любую точную модель EH Антенны. Уравнение для этой емкости - Cw = 0. 614/log (C/W) в Пф на дюйм длины цилиндра, где C - диаметр цилиндра, и W - диаметр провода. Общая емкость CW тем больше, чем больше длина нижнего цилиндра.

Емкость катушки (СТ): Сама емкость катушки настройки может быть большая и будет иметь значение, при вычислении индуктивности, необходимой для резонанса антенны. Пользуйтесь справочниками для вычисления значения емкости этой катушки, которую Вы изготавливаете для Вашей антенны или экспериментально корректируйте катушку настройки. Для большинства приложений можно использовать значение ? от емкости между цилиндрами, с достаточной точностью.

Прочие емкости: Имеется также другие емкости, которые очень трудно вычислить. Это емкость между нижним цилиндром и катушкой настройки. Необходимо будет настраивать антенну катушкой настройки, чтобы достигнуть центра рабочей частоты.

Сопротивление Потерь (RL): провод, которым намотана катушка настройки, будет иметь некоторое сопротивление, в зависимости от количества витков, диаметра провода, и рабочей частоты. Эффективность антенны связана с количеством потерь в этом проводе, по сравнению с Сопротивлением Излучения. Оно может быть определено, вычислением тока в катушке настройки, проходящим через это сопротивление, тогда теряющаяся мощность P = I ^ 2R. Для мощностей до 100 ватт, используйте эмалерованный провод *14. Для мощностей больших, используйте провод *8.

Эффективность антенны: - выходная мощность, разделенная на входную. мощность, которая может быть выражена как h = RR/ (RL + RR) для обычных антенн. Есть также токи через емкости, которые шунтируют настройку, искажая ток в ЕН Антенне и которые не дают вычислить эффективность, по приведенной формуле, верно. Но, так как сопротивление излучения очень большое (120 Ом) по сравнению с сопротивлением потерь (доли Ома), эффективность EH Антенны приближается к 100%, если не используется очень тонкий провод для катушки настройки. (Это - десятый уникальный параметр).

Катушка настройки: индуктивность катушки настройки определяется емкостью трех (3) конденсаторов и используя их значение, можно вычислить величину индуктивности L = 1/ ((2pF) 2 (Cc + CW + CT)). Для расчета значения индуктивности и количества витков можно использовать известные формулы. Дополнительная информация будет представлена позже.

Входная катушка: Как было ранее сказано, частота, при которой происходит максимальное излучение, не может быть отождествлено с резонансной частотой. Максимальное излучение максимально, когда все правильно сфазировано. Минимум КСВ получается когда на входе минимальная реактивность со стороны передатчика. Это главное отличие от стандартных антенн. Если резонансная частота и максимальная частота излучения не одинаковы, передатчик предпочтет настроиться на частоту, где самый низкий КСВ. Это будет близко к резонансной частоте, но может быть далеко от частоты, где правильное фазирование диктует максимальное излучение, таким образом, излучение ЕН антенны будет низкое. Это становится очевидным, когда катушка настройки нагревается при передаче, даже если КСВ в передатчике имеет отличное значение, пока антенна не будет плавиться!!!

Если антенна представляет из себя катушку настройки совместно с емкостью цилиндров и включенным последовательно Сопротивлением Излучения, то максимальное излучение будет на резонансной частоте, как в стандартной антенне. Способ подключения к катушке настройки земли с одной стороны, обеспечивает почти -90 градусный поворот фазы. Однако, в связи с тем, что емкость CW + CT - действуют параллельно катушки настройки, а Сопротивление Излучения - только последовательно с Cc, имеется разница частот между частотой резонанса (минимум КСВ) и частотой с максимальным излучением. Такая разница может быть мала, и ее можно компенсировать, добавляя реактивное сопротивление последовательно во входную линию. Если значения CW и CT малы, тогда необходима дополнительная емкость на входе, корректирующая входной импеданс, чтобы он был R+j0 при той же самой частоте, как и максимальное излучение. С другой стороны, если сама емкость катушки настройки или емкость между катушкой и нижним цилиндром большая, то необходима дополнительная входная индуктивность, чтобы скорректировать входной импеданс. Это - типичный случай для радиолюбительских антенн из-за того, что катушка настройки располагается вблизи нижнего цилиндра. Лучше всего будет, если катушка настройки располагается от нижнего цилиндра на расстоянии одного диаметра.

ГЛАВА 3 - КОНСТРУКЦИЯ

ФИЗИЧЕСКИЕ ДЕТАЛИ:
После того, как мы рассмотрели различные компоненты (в реальной и виртуальной) EH Антенне, можно рассмотреть физическую конструкцию. В правой стороне Рисунка 3 - эскиз, показывающий конструкцию ЕН Антенны ЗВЕЗДА.

Излучающая часть: Как и в любой антенне, для начала, выбирается форма ее части, которая будет излучать. Выбирается соотношение длины цилиндров к их диаметрам. Для низкого угла излучения, характерного для АМ вещательного и радиолюбительских диапазонов на частоты более 7 МГц, или для работы с DX на низких частотах, соотношение L/D обычно выбирают равным 6:1 или меньше. Для радиолюбительских антенн ниже частоты 10 МГц используется угол излучения более высокий, он также характерен для ближних связей, поэтому соотношение L/D выбирается равным 12 или большим.

Чтобы оценить излучение EH Антенны в сравнении, пожалуйста, см. Рисунок 6 на следующей странице. Графики стандартных антенн были получены с помощью компьютерной программы MININEC. Информация не предназначена для практического использования радиолюбителями, но она дает наглядное представление о работе антенн. Начните с рассмотрения графика для Диполя в ? длины волны. Излучение при 90 градусах очень хорошее, и уменьшается при уменьшении угла излучения. Диполь в ? длины волны не работает хорошо при больших углах излучения, но дает увеличение излучения при более низких углах. Если диполь поднять выше, начинают заполняться пустые места на графике. Начинается излучение под более пологими углами, обусловленное коэффициентом усиления антенн. Рассмотрим вертикальный излучатель в ? длины волны. Это хорошие антенны, не смотря на их простоту. Особенно в случаях, когда необходимое направление закрыто, например близлежащими зданиями, или если антенна не может быть поднята высоко над землей. Им также необходима хорошая система из 120 радиальных противовесов. Для диполей, график показывает излучение в направлении максимума излучения, которое перпендикулярно диполю.

Имеется также другой график - названный идеальной антенной. Мы вычислили образец гипотетической антенны, которая даст равный уровень сигнала при всех направлениях. Например, под углом 90 градусов, при ионосфере высотой 185 миль. На диапазоне 75 метров, 100 ваттный передатчик с усилением антенны -10 dBi будет приниматься на диполь с уровнем сигнала S9 + 8 dB. Если используются два ? волновых диполя, уровень сигнала будет S9 + 24 dB. Это будет разница в 16 dB. Если уровень принимаемого сигнала S9, это не имеет значения, поскольку уровень выше S9.


Рис. 6


Рассмотрим две вертикальные антенны при расстоянии 1500 миль, с углом излучения приблизительно 8 градусов. Усиление около + 2 dBi позволит принимать сигнал с уровнем S9 + 9 dB. Идеальная антенна, работающая с вертикальной антенной, создала бы уровень S9 + 11 dB. При использовании тех же самых антенн, на расстоянии 1500 миль, диполи позволили бы принимать сигнал с уровнем S8 + 5dB. На идеальную антенну уровень сигнала был бы + 4 dBi при угле излучения 8 градусов. Идеальная антенна работала бы хуже на близких расстояниях, но давала бы выигрыш на дальних.

Каково положение ЕН Антенны на этом рисунке? Для соотношения длины цилиндров к диаметру, равному 12:1, EH Антенна имеет усиление приблизительно от -8 dB до -10 dB по сравнению с диполем ? длины волны, поднятым на ? длины волны над землей. Для соотношения L/D равного 6, под низкими углами, EH Антенна – дает усиление приблизительно в 4 dB, в сравнении с ? волновым излучателем. Мы нарисовали эти кривые красным цветом на рисунке 6. Это превосходная антенна для низкого угла излучения. График показывает значения, для высоты подъма антенны ? длины волны над землей. Однако при высоте подъема, равном всего 0,1 длины волны, усиление уменьшилось бы на 4 dB.

Усиление вертикальной антенны было проверено путем измерений. ЕН Антенна сравнивалась со стандартной вертикальной АМ радиовещательной антенной. Также сравнивалась ЕН Антенна на любительский дапазон 40 метров с полуволновой вертикальной антенной. Хотя ЕН Антенна лучше работала под более низкими углами, вертикальная антенна работала лучше под более высокими углами. Проводились также и другие испытания, на других частотах, с аналогичными результатами.

Эти сравнения помогут Вам решить, какую антенну Вы предпочитаете для Вашего режима работы. Надо подчеркнуть, что самая лучшая эффективность, при низких углах излучения ЕН Антенны происходит тогда, когда она находится не ниже ? волны над землей. Например, на диапазоне 40 метров, это всего лишь 30 футов. Такая особенность дает Вам возможность расположить ЕН Антенну высоко над землей, выше, рядом расположенных зданий, так как она не требует радиальных противовесов, и излучение от цилиндров будет высоко над землей. Под высокими углами излучения, вертикально установленная EH Антенна, никогда не сможет работать лучше старого стандартного диполя. Однако, если у Вас мало места, а Вы хотите работать на диапазоне 160, 80 или 40 метров, то несомненно, ЕН Антенна Вас выручит. Под высокими углами, эффективность ее не ухудшается быстро, поскольку антенна имеет малые размеры, даже при низкой высоте подъема в 0,1 длины волны (но все же выше уровня крыши), EH Антенна будет очень хорошо работать.

ЕН Антенна – это вертикальный диполь, поэтому его нельзя располагать близко к земле. С другой стороны она не требует радиальных проводов. Это является главным экономическим фактором при установке антенн для АМ Радиовещания, особенно на частотах выше 1200 КГц, когда маленькая ЕН Антенна может быть установлена без сложной металлической опорной мачты. Таким образом необходимо поднять антенну на высоту минимум в 0,1 длины волны и она будет равняться по эффективности стандартной, установленной на высокой металлической мачте, с увеличением излучения, при подъеме до ? длины волны, минимумом при подъеме на ? длины волны и затем опять максимумом при подъеме на ? длины волны. Даже для 160 метрового диапазона, антенну надо будет поднять всего на 16 метров. Но даже при подъеме на 9-10 метров, антенна все еще будет работать хорошо. По этой причине, удобно использовать такую антенну для DX экспедиций.


Рис. 7 Зависимость усиления от высоты подъема


Чтобы детально рассмотреть уровень излучения при разных высотах подъема ЕН Антенны, дочтаточно взглянуть на график Рис.7. График изначально был получен экспериментально, используя ЕН Антенну на 20 метровый диапазон и удаленный источник излучения. После этого была установлена АМ Радиовещательная ЕН Антенна и проверена в сравнении со стандартной антенной этого же диапазона (со 120 радиальными проводами), в соответствии со стандартами FCC (см. фотографию на обложке книги). Эти испытания и сравнения были выполнены должностным консультантом по АМ Радиовещанию, в соответствии с требованиями FCC, в рамках выданной лицензии, на эксплуатацию экспериментальной АМ Радиовещательной ЕН Антенны. Из графика видно, что ЕН Антенна, установленная на высоте 0,1 от длины волны, давала усиление всего на 0,84 децибела ниже, чем стандартная АМ Радиовещательная антенна того же диапазона. При установке антенны на ? длины волны от земли, усиление равняется почти на 2 db больше, чем у стандартной антенны. Это конечно очень интересно и выявилось на стадии развития программы исследования ЕН Антенн. Также мы выяснили, что стальная мачта, используемая для установки цилиндров, сузила полосу пропускания антенны с расчетных 279 КГц до 40 КГц. Только намного позже, мы выяснили, как вычислять полосу пропускания ЕН Антенны. Сокращение полосы пропускания может вызвать снижение сопротивления излучения со 120 Ом до 17 Ом. Казалось бы, что такое сужение полосы пропускания, почти в 7 раз, должно резко улучшить эффективность антенны. Однако наши вычисления показывают, что разница была бы всего в доли децибела. В этом различие между стандартной антенной для АМ Радиовещания и ЕН Антенной почти на 3 децибела, немного меньше, чем 4 децибела, наблюдаемые в других измерениях. Однако с тех пор мы выяснили, что отношение L/D равное 3, увеличило бы угол излучения по сравнению с соотношением 6:1, используемым при испытаниях, таким образом, 4 децибела это правильно. Главный вывод из просмотра этого графика то, что при высоте подъема на 0,1 длины волны, усиление ЕН Антенны почти равно усилению стандартной антенны со 120 радиальными проводами. Как ранее говорилось, излучение от цилиндров, находится далеко от земли и никакие радиальные провода не требуются.

В некоторых условиях, желательно иметь больший контроль над выбором угла излучения, чем предлагаемый, изменением соотношения длины цилиндров к их диаметру. Это может быть достигнуто использованием би-конусной формы. (Это - одиннадцатый уникальный параметр). Хотя эти антенны излучают на 360 градусов по азимуту, они могут создавать очень узкое повышенное излучение в этой области и дополнительное усиление. Диско-конусная антенна показана на рисунке 8B, угол излучения равен ? угла между диском и конусом. Подтверждением сказанного был эксперимент, проведенный на антенне АМ Радиовещания.Би-конусная антенна показана на рисунке 8A – у нее узкий луч излучения, который параллелен земле, когда би-конус ориентирован, как показано на рисунке. К сожалению, мы не имеем точного значения усиления в настоящее время, но это важно. В обоих случаях рекомендуемая схема фазирования - L + T .


Разные конфигурации EH Антенн рассматривались здесь; поэлементно и детально. Мы показали, что каждая антенна, в целом, может быть очень маленьких размеров, даже на 160 метровом диапазоне. Из-за ограниченных E и H полей, исходя из конструкции антенны (все элементы активны – нет паразитных элементов), близко расположенные предметы не могут взаимодействовать с антенной, поэтому их влияние очень мало. (Это - двенадцатый уникальный параметр).

Полоса пропускания: следующий шаг в выборе конструкции, является выбор полосы пропускания. Используя уравнение для вычисления емкости между цилиндрами, и принимая во внимание Сопротивление Излучения – 120 Ом, диаметр цилиндров может быть легко вычислен. Чтобы помочь в этом процессе, на рисунке Рис. 9 представлена диаграмма, по которой можно определить емкость между цилиндрами, в зависимости от их диаметра. Представлены два (2) графика. Верхний - для отношения L/D равным 12, нижний - для отношения L/D = 6.


Рис. 9 Емкость между цилиндрами

 


Рис. 10 Ширина полосы пропускания антенны по уровню 3 dB
в зависимости от емкости между цилиндрами.


На рисунке Рис.10 приведен график зависимости полосы пропускания антенны от емкости между цилиндрами, для диапазонов 160 метров (темно-синий), 80 метров (фиолетовый), 40 метров (желтый), 20 метров (бирюзовый) и 10 метров (коричневый).
Обратите внимание, что очень маленькая емкость требуется для более высокочастотных диапазонов. С другой стороны, для низкочастотных диапазонов требуется большая емкость, что и обуславливает размеры цилиндров. только очень малая пропускная способность(емкость,способность) требуется для данной ширины полосы частот при более высоких частотах. С другой стороны большая емкость требуется для более низких частот, таким образом, требуются большие цилиндры. Например для ЕН Антенны АМ Радиовещания были использованы цилиндры 36 дюймов в диаметре и 18 футов высотой. Однако для АМ Радиовещательного диапазона более 120 КГц использовались цилиндры диаметром только 9 дюймов и длиной 54 дюйма, при обеспечении заданной полосы пропускания. (Фотография такой антенны приведена на обложке книги). Интересно, что коэффициент перекрытия по частоте в такой антенне был 1700/540 = 3,5. Это намного большее перекрытие, чем от диапазона 80 метров до 30 метрового и от 30 метрового до 10 метрового. Обратите внимание, что размер антенны не зависит от частоты, а диктуется только полосой пропускания антенны. Теоретически, ЕН Антенну можно изготовить на любой диапазон, однако уже на диапазоне 2 метра, они становятся очень маленькими. На более высокочастотные диапазоны сделать их уже очень трудно.

В следующих параграфах, мы на примерах объясним технические детали. Чтобы использовать эти графики, выберите требуемую ширину полосы пропускания антенны, например 300 КГц на 40 метровом диапазоне. Между прочим, мы сделали вычисления, основанные на полосе пропускания по уровню +/- 3 dB, ширина полосы пропускания по уровню 2:1 КСВ будет приблизительно равна ? от 3 dB ширины полосы пропускания. Необходимо также отметить, что блок настройки антенны будет хорошо согласовывать антенну в полосе пропускания 3 dB, преобразовывая импеданс антенны к очень низкому КСВ, чтобы передатчик работал в хорошем режиме. Не используйте блок настройки антенны, чтобы согласовывать антенну вне 3 dB ширины полосы пропускания, даже если может быть достигнут низкий КСВ. Причина в том, что блок настройки может изменять реактивное сопротивление на входе, что вызовет нарушение фазирования антенны, которое, в свою очередь, изменит частоту на которой происходит максимальное излучение. При резонансной частоте (обычно самый низкий КСВ) эффективное Сопротивление Излучения может снизиться значительно. В этом случае большое количество мощности передатчика будет рассеиваться на сопротивлении потерь. В этом случае передатчик нагревает катушку настройки и может привести к ее разогреву настолько, что антенна станет очень горячей и превратиться в уголь. Здесь можно дать один совет – купить или сделать самому измеритель напряженности поля, чтобы его использовать для правильной настройки антенны.

Теперь пример: Для полосы пропускания 600 КГц на уровне 3 dB (300 КГц при КСВ 2:1) на 40 метровом диапазоне, по графику находим емкость между цилиндрами, приблизительно 16 Пф. Первый график, для отношения L/D = 12 показывает необходимость использования цилиндров диаметром 2 дюйма. Это будет большая универсальная радиолюбительская антенна. С другой стороны, если хочется построить хорошую антенну для работы с DX, при КСВ равном 2:1 и шириной полосы пропускания 600 КГц на диапазон 40 метров, потребовались бы цилиндры диаметром в 3 дюйма. Это большая антенна по стандартам EH Антенны, даже если она измеряется дюймами, в то же время обычные антенны, в этом случае, измеряются многими десятками футов (от 468/7 до 67 футов при 7 MHz), сравним примерно с ? волновым диполем, или 34 фута для ? волнового вертикального излучателя.

Если читатель, рассматривая антенну диаметром 3 дюйма, и имеющую длину 6.25 футов, решает, что она все равно слишком большая для 40 метрового диапазона, имеются варианты. Уменьшите ширину полосы пропускания антенны до той величины, которая Вам необходима для нормальных связей или используйте сердечник в катушке настройки, чтобы двигая его с помощью винта, иметь возможность менять частоту настройки по диапазону (это можно делать дистанционно), или используйте ? волновую линию питания. Об этом будет сказано позже.

Графики, приведенные выше, основаны на предположении, что эффективное Сопротивление Излучения равняется 120 Ом. Ваша антенна может иметь небольшие отклонения. Однако, если ваша антенна сделана, и последние испытания номинально не совпадают с расчетной шириной полосы пропускания, необходимо определить причину, перед тем, как начать использовать антенну.

Надо отметить, что на 40 метровый диапазон можно создать очень маленькую антенну, которая будет в выигрыше по сравнению с большой антенной. Также интересно обратить внимание на интересный факт, чтобы сделать стандартную антенну с широкой полосой пропускания, необходимо использовать, по крайней мере, петлевой вибратор. В этом случае полоса пропускания увеличивается, но размеры остаются прежними ? длины волны. Есть и еще интересная особенность – можно использовать блок настройки антенны, чтобы настроить диполь в широком диапазоне частот. Это происходит потому, что Сопротивление Излучения стандартной антенны почти постоянно, несколько изменяясь с частотой. Сравните это с ЕН Антенной, где есть максимум сопротивления излучения, на котором антенна правильно сфазирована. На других частотах, сопротивление излучения почти равно нулю. Именно по этой причине ЕН Антенна не излучает на гармониках. (Это - тринадцатый уникальный параметр).

Для тех, кто предпочитает вычисления, уравнения могут быть представлены в формате программы Exсel. Нужно будет просто ввести необходимые параметры и можно будет сразу увидеть результирующую полосу пропускания антенны, Q, и суммарную длину антенны. Это позволяет читателю прежде все прикинуть и рассчитать, а потом заняться постройкой антенны. Обратите внимание: в уравнении ширины полосы пропускания, используется значение 120 Ом для R. Полная программа, которая вычисляет все параметры ЕН Антенны, находится на сайте. Я сделал эту программу, а другие радиолюбители переработали ее для различных форматов данных.

Введите частоту, Диаметр цилиндров (в дюймах), и отношение L/D
Частота 1,9 МГц . .
Диаметр цилиндров 2,25 Дюйма . .
Отношение L/D . . .
C 19,4 Пф С(Пф)= 0,546*L/D+2,06*D
BW 52,7 КГц BW(КГц)= R*C*6,28*F ^ 2/1000
Q 36,0   Q= F/BW
Общая длина 4,7 Футов Длина = D+2*D*L/D


Прежде, чем мы закончим эту тему, имеется другой важный момент, который необходимо учитывать в процессе конструирования. Чтобы поля внутри антенны правильно взаимодействовали, интервал между цилиндрами должен быть равен диаметру. Один (1) диаметр, включен в суммарную длину антенны при вычислениях.

Теперь, посмотрите на антенну 40 метрового диапазона, которую Вы только что разрабатывали. Диаметр был 2.25 дюйма, и длина каждого цилиндра была от 12*2.25 до 27 дюймов. Следовательно, суммарная длина антенны - только 27 + 2.25 + от 27 до 56.25 дюймов. Мы имеем антенну на 40 метровый диапазон, которая немногим больше, чем 2 дюйма в диаметре и меньше чем 5 футов в высоту. Рассмотрите эту антенну другим способом. Эта антенна имеет длину 56.25 / ((984/7) *12) = от 0.033 до 3 % длины волны. Это маленькая антенна. Однако, если Вы желаете выбрать полосу пропускания антенны, антенна могла бы быть очень маленькая. Обратите внимание на пример вычислений для ЕН Антенны 160 метрового диапазона выше. Большинство радиолюбителей используют антенны для 160 метрового диапазона с очень узкой полосой пропускания, в то время как маленькая ЕН Антенна может обеспечить полосу пропускания в 50 КГц по уровню 3 dB, что эквивалентно 120-футовому диполю.

Можно воспользоваться очень полезным приемом, оснастив катушку настройки медным или алюминиевым сердечником, который перемещается внутри катушки с помощью настроечного винта, это также средство для настройки антенны. Такой прием может исключить потребность в антенне с широкой полосой пропускания и уменьшить ее размеры. Например, фирма FR Radio Lab в Японии, производит EH Антенну, которая имеет цилиндры диаметром 1 дюйм и L/D 12 для суммарной длины 25 дюймов (0.8 % длины волны) для 80 метрового диапазона. Маленький двигатель перемещает сердечник в катушке настройки и допускает покрытие по частоте от 3.5 до 4 MHz. Поскольку подвижный сердечник изменяет и фазу и резонансную частоту, низкий КСВ может быть достигнут в широкой полосе частот.

К настоящему времени я уверен, что Вы, читатель, поняли, что это не стандартная антенна, следовательно, размер может быть выбран для желаемой полосы пропускания. Независимо от размера, все параметры антенны не приводят к потере эффективности. На низких частотах, когда количество витков в катушке большое, эффективность немного упадет, но совсем незначительно. Например, предположим, что сопротивление потерь в катушке настройки равно – 0,5 Ом. Тогда эффективность антенны будет: 120/(120+0,5) = 99,6%. Если потери увеличатся вдвое, то эффективность уменьшится до: 120/(120+1) = 99,2%.
В последующих параграфах мы представим необходимые детали для выполнения антенны. Мы будем использовать предыдущие примеры, для концепция ЕН Антенны была понятна.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.