Процесс сушки влажных материалов зависит от формы связи влаги с материалом и режима сушки или условий испарения влаги с поверхности материала. Скорость сушки изменяется с изменением влажности материала.
Если процесс влагоотдачи изобразить графически в координатах влажность материала – время сушки, то получим кривую отдачи влаги, показанную на рис. 1 А.
При внесении материала в сушилку с влажностью W1 в начальный небольшой период времени t1 почти всё подводимое тепло Q тратится на прогрев материала. В точке В температура поверхности материала tпм достигает точки росы = температуре сушильного агента по мокрому термометру, т.е. (Q»tпм). Период возрастающей влагоотдачи с одновременным нагревом материала до точки В, где (Q»tпм) называют первым периодом сушки. Он очень кратковременный и по времени равен значению t1. От точки В влагосодержание начинает уменьшаться с одинаковой скоростью до точки С, при этом температура материала не меняется, что объясняется испарением влаги с поверхности материала, а такой процесс идёт с расходом теплоты на парообразование. В этот период температура в центре материала постепенно повышается до температуры поверхности. Участок ВС является вторым периодом, который называют периодом постоянной скорости сушки. Точка С, характеризующая окончание периода постоянной скорости сушки соответствует критическому влагосодержанию материала, т.е. в материале прекращается усадка и завершаются процессы структурообразования. По времени этот период соответствует значению t2.
От точки С до точки D процесс удаления влаги из материала замедляется и кривая на графике приближается к значению Uр – равновесному влагосодержанию (на графике пунктирная линия). Участок СD относится к третьему периоду – периоду падающей скорости сушки. Он самый продолжительный и по времени равен значению t3. Точка D на графике соответствует среднему конечному влагосодержанию материала Uк. Обычно сушку не ведут до состояния Uк и выгружают материал из установки раньше, чем закончится третий период. Выдают из установки материал при среднем влагосодержании Uв, когда температура поверхности материала равна температуре центра материала, т.е. tпм = tцм.
Скорость сушки dw/dτ, определяется методом графического дифференцирования как tg угла наклона a касательной в любой точке влагоотдачи.
Максимальное значение скорости сушки наблюдается во втором периоде, когда угол a наибольший. При равновесной влажности Uр угол a = 0, а следовательно, и скорость сушки тоже равна 0.
Раскроем сущность понятия критическое влагосодержание материала. Как было отмечено ранее, в этот момент прекращается усадка, и завершаются процессы структурообразования. В материале образуются поры и капилляры. Усадка идёт только до какого-то определённого влагосодержания. Поэтому устанавливали влагосодержание, при котором усадка в материале заканчивалась. Это влагосодержание для каждого материала своё и называется критическим. Существует мнение, что после достижения критического влагосодержания материал можно сушить как угодно быстро. Но практика показала, что в некоторых случаях он всё-таки растрескивается. Причина такого поведения материала объясняется тем, что критическое влагосодержание для одного и того же материала непостоянно и зависит от режимов сушки. Например, примем за исходное критическое влагосодержание значение Uкр, полученное опытным путём. При более быстрой сушке критическое влагосодержание уже будет другим Uкр*, станет выше, т.е. Uкр* > Uкр. При более медленной сушке критическое влагосодержание для этого же материала Uкр** станет меньше Uкр, т.е. Uкр** < Uкр. Эту зависимость необходимо учитывать, назначая режимы сушки изделий.
Усадка и деформации, возникающие в процессе сушки
При сушке керамических и некоторых теплоизоляционных материалов происходит удаление влаги, частицы материала сближаются, и общие размеры изделия сокращаются. Для многих материалов объёмная усадка подчиняется линейному закону. Зависимость между объёмом тела V и его влагосодержанием U выражается формулой
V = V0 (1 + bV U), (1)
где bV = d V / V0 dU – коэффициент объёмной усадки.
В капиллярно-пористых коллоидных телах линейная усадка подчиняется линейному закону
L = L0 (1 + bL U), (2)
где bL = d L / L0 dU – коэффициент линейной усадки, характеризующий интенсивность изменения линейных размеров материала.
Усадка зависит от молекулярной структуры вещества и от видов связи влаги с материалом. Ввиду разного влагосодержания по сечению усадка в материале будет различной, что приводит к развитию объёмно-напряжённого состояния и к растрескиванию. Для объяснения механизма возникновения объёмно-напряжённого состояния рассмотрим сушку изделия в виде пластины длиной L0
Пусть сушка пластины происходит только с двух сторон, остальные поверхности пластины влагоизолированы.
Допустим, что в какой-то момент сушки перепад влагосодержания составляет в пластине DU. Представим, что пластина состоит из отдельных бесконечно тонких полосок, которые могут сокращаться самостоятельно. Тогда длина каждой полоски, согласно формуле (2), должна быть пропорциональна влагосодержанию. Однако пластина в реальности целая и не состоит из отдельных полосок, и усадка её заканчивается при длине Lк, что соответствует среднему влагосодержанию. Значит, поверхностные слои пластины сократились до Lк, а должны были бы быть значительно короче. Центральные слои, которые сократились тоже до Lк, должны быть длиннее. Следовательно, в реальной пластине поверхностные слои растянуты, а центральные – сжаты.
Эти напряжения на рисунке обозначены знаками (+) и (-). Только два слоя (НП) – нейтральная плоскость уменьшились в размерах пропорционально влагосодержанию и напряжённое состояние в них отсутствует. Силы растяжения и сжатия стараются сдвинуть отдельные слои относительно друг друга. При этом возникают тангенциальные напряжения, которые, как только они превысят прочность материала, приведут к образованию трещин и разрушению структуры изделия.
В процессе сушки из-за перепадов температур на поверхности и в центре изделия так же возникает объёмно-напряжённое состояние. Для представления о напряжённом состоянии рассмотрим аналогичную пластину длиной L0, подвергнутую нагреву.
Если бы пластина состояла из отдельных бесконечно тонких полосок, которые могли бы удлиняться и сокращаться самостоят6ельно, то длина каждой полоски могла быть определена по формуле
Lt = L0 (1 + aL Dt), (3)
где aL – коэффициент линейного расширения.
Рассчитав длину каждой из полосок по формуле (3) и отложив половину на рис.3 (показано пунктиром; размеры откладываются от середины пластины), получим реальную форму изделия Lt = f (t), которую должна была бы приобрести пластина при нагревании. Однако общее удлинение пластины оказалось меньшим, и длина её стала равной Lп = f (t ср).
Следовательно, поверхностные слои должны были удлиниться на D Lп, а удлинились меньше и испытывают сжимающие напряжения, а центральные слои удлинились больше чем положено и испытывают растягивающие напряжения. Эти напряжения показаны на рисунке знаками (+) и (-). Условными обозначениями (НП) зафиксированы нейтральные плоскости, в которых напряжения не возникли.
Напряжённые состояния, развивающиеся от разности влагосодержаний и температур, имеют противоположные знаки. При сложении из большего значения вычтем меньшее. Поскольку напряжённое состояние от разности влагосодержаний почти в 10 раз больше чем от разности температур, то суммарное напряжённое состояние будет несколько меньшим.
Механизм появления трещин в изделиях, а возможно и их разрушение объясняется тем, что напряжённое состояние действует на слои пластины, стараясь сдвинуть один слой относительно другого, вызывая тангенциальные напряжения, которые в случае превышения прочности материала приводят к его растрескиванию или разрушению.
При сушке, как и при ТВО, во внутренних слоях изделия возникает избыточное давление. Перепад давлений между слоями представляет собой приложенную силу, которая не удлиняет слои материала, а старается сдвинуть их относительно друг друга, т.е. из-за перепадов давлений также создаются тангенциальные напряжения.