Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Температуры застывания, помутнения и начала кристаллизации.



Температуры вспышки, воспламенения и самовоспламенения

Продукты нефтепереработки относятся к числу пожароопасных веществ. Пожароопасность керосинов, масел, мазутов и других тяжелых нефтепродуктов оценивается температурами вспышки и воспламенения.

Температурой вспышки называется температура, при которой пары нефтепродукта, нагреваемого в определенных стандартных условиях, образуют с окружающим воздухом взрывчатую смесь и вспыхивают при поднесении к ней пламени. Следует отметить, что при определении температуры вспышки бензинов и легких нефтей определяют верхний предел взрываемости, а для остальных нефтепродуктов – нижний.

Температура вспышки зависит от фракционного состава нефтепродуктов. Чем ниже пределы перегонки нефтепродукта, тем ниже и температура вспышки. В среднем температура вспышки бензинов находится в пределах от –30 до –400С, керосинов 30-600С, дизельных топлив 30-900С и нефтяных масел 130-3200С. По температуре вспышке можно судить о наличии примесей более низкокипящих фракций в тех или иных товарных или промежуточных нефтепродуктах.

Температурой воспламенения называется температура, при которой нагреваемый в определенных условиях нефтепродукт загорается при поднесении к нему пламени и горит не менее 5 секунд. Температура воспламенения всегда выше температуры вспышки. Чем тяжелее нефтепродукт, тем больше эта разница. При наличии в маслах летучих примесей эти температуры сближаются.

Температурой самовоспламенения называется температура, при которой нагретый нефтепродукт в контакте с воздухом воспламеняется самопроизвольно без внешнего пламени. Температура самовоспламенения нефтепродуктов зависит и от фракционного состава и от преобладания углеводородов того или иного класса. Чем ниже пределы кипения нефтяной фракции, тем она менее опасна с точки зрения самовоспламенения. Температура самовоспламенения уменьшается с увеличением среднего молекулярного веса нефтепродукта. Тяжелые нефтяные остатки самовоспламеняются при 300-3500С, а бензины только при температуре выше 5000С.

При появлении внешнего источника пламени (огня или икры) положение резко меняется, и легкие нефтепродукты становятся взрыво- и пожароопасными.

Из углеводородов самыми высокими температурами самовоспламенения характеризуются ароматические углеводороды.

 

Температуры застывания, помутнения и начала кристаллизации.

Нефть и нефтепродукты не являются индивидуальными веществами, а представляют собой сложную смесь органических соединений. Поэтому они не имеют определенной температуры перехода из одного агрегатного состояния в другое. Влияние температуры на агрегатное состояние нефти и нефтепродуктов имеет важное значение при их транспортировке и эксплуатации.

Низкотемпературные свойства нефти, дизельных и котельных топлив, а также нефтяных масел характеризуются температурой застывания. Карбюраторные, реактивные и дизельные топлива характеризуются температурой помутнения. Карбюраторные и реактивные топлива, содержащие ароматические углеводороды, характеризуются температурой начала кристаллизации. Указанные характеристики не являются физическими константами, однако достаточно четко определяют температурный диапазон практического применения соответствующих нефтепродуктов.

Температура застывания характеризует возможную потерю текучести нефтепродукта в зоне низких температур. Чем больше содержание парафинов (твердых углеводородов), тем выше температура застывания нефтепродукта. Следует отметить, что потеря текучести может быть связана и с увеличением вязкости продукта с понижением температуры. Например, кинематическая вязкость остаточного авиамасла при 500 С равна 2 ст, при 00 С – 130 ст, а при –250С она повышается до 3500 ст. При такой высокой степени вязкости масло теряет подвижность и его невозможно прокачивать.

Температура помутнения указывает на склонность топлива поглощать при низких температурах влагу из воздуха (это особенно опасно для авиационных топлив, поскольку образующиеся кристаллики льда могут засорять топливоподающую аппаратуру, что может привести к трагедии).

Температура начала кристаллизации карбюраторных и реактивных топлив не должна превышать –600С. По этой причине в зимних сортах бензина нежелательно наличие высокого содержания ароматических углеводородов. При повышенном содержании бензола и некоторых других ароматических углеводородов эти высокоплавкие соединения могут выпадать из топлива в виде кристаллов, что приводит к засорению топливных фильтров и остановке двигателя.

Электрические (диэлектрические) свойства нефти.

Безводная нефть и нефтепродукты являются диэлектриками (диэлектрическая проницаемость нефти ~2; для сравнения у стекла она ~7-8). У безводных чистых нефтепродуктов электропроводность совершенно ничтожна, что имеет важное практическое значение и применение. Так, твердые парафины применяются в электротехнической промышленности в качестве изоляторов, а специальные нефтяные масла (конденсаторное, трансформаторное) – для заливки трансформаторов, конденсаторов и другой аппаратуры, например, для наполнения кабелей высокого давления (изоляционное масло С-220).

Высокие диэлектрические свойства нефтепродуктов способствуют накоплению на их поверхности зарядов статического электричества. Их разряд может вызвать искру, а следовательно и загорание нефтепродукта. Надежным методом борьбы с накоплением статического электричества является заземление всех металлических частей аппаратуры, насосов, трубопроводов и т.п.

Оптические свойства нефти.

Оптическим характеристикам нефти относятся цвет, флуоресцентную и оптическую активность.

Углеводороды нефти бесцветны. Тот или иной цвет нефти придают содержащиеся в них смолы и асфальтены, а также некоторые сернистые соединения. Чем тяжелее нефть, тем больше содержится в ней смолисто-асфальтеновых веществ, и тем она темнее.

Флуоресценцией называется свечение в отраженном свете. Это явление характерно для сырой нефти и нефтепродуктов. Причины флуоресценции нефти точно не известны. Не исключено, что это связано с наличием в нефти полиядерных ароматических углеводородов или примесей. Не случайно, глубокая очистка нефти ликвидирует флуоресценцию.

Под оптической активностью нефтепродуктов, как и других органических соединений, понимают их способность вращать плоскость поляризации света. Большинство нефтей вращают плоскость поляризации вправо, т.е. содержат в своем составе правовращающие изомеры. Практического значения это свойство нефти не имеет.

Для количественной характеристики оптических свойств нефти и нефтепродуктов нередко используют показатель преломления (n20D), удельную рефракцию (r), рефрактометрическую разность (Ri), удельную дисперсию (d).

Удельная рефракция (r) определяется формулой Л.Лоренца и Г.Лоренца:

r = (n2D –1)/ (n2D +2)r

или формулой Гладсона-Дейля:

r = (nD –1)/r

(в обоих формулах значения показателя преломления и плотностиберутся для одной и той же температуре).

Рефрактометрическая разность (интерцепт рефракции) Riтакже связан с плотностью и показателем преломления:

Ri =n20D - r204/2

Эта константа имеет постоянное значение для отдельных классов углеводородов, например, алканы – 1.0461; мноциклические углеводороды – 1.0400; полициклические – 1.0285; ароматические – 1.0627 и т.п.

Удельная дисперсия (d) характеризует отношение разности показателей преломления для двух различных частей спектра к плотности:

d = (nF - nc) 104/r

где nFи nc- показатели преломления для голубой и красной линий водорода соответственно (l = 4861 ммк и 6563 ммк).

Растворимость и растворяющая способность нефти.

Нефть и жидкие углеводороды хорошо растворяют йод, серу, сернистые соединения, различные смолы, растительные и животные жиры. Это свойство нефтепродуктов широко используется в технике. Не случайно, на основе нефтепродуктов производят большое число высококачественных растворителей для лакокрасочной, резиновой и других отраслей промышленности.

Нефть также хорошо растворяет газы (воздух, оксид и диоксид углерода, сероводород, газообразные алканы и т.п.).

В воде ни нефть, ни углеводороды практически не растворимы. Из углеводородов худшая растворимость в воде у алканов, в несколько большей степени растворимы в воде ароматические углеводороды.

Следует помнить, что любая система растворитель - растворяемое вещество характеризуется критической температурой растворения (КТР), при которой и выше которой наступает полное растворение. Причем, если в смеси находятся вещества, растворяющиеся в данном растворителе при разных температурах, то появляется возможность их количественного разделения.

 

21. Образование аддуктов и комплексов. Химические методы разделения, методы выделения отдельных групп соединений из нефтяных фракций.

Известна три типа аддуктов и комплексов углеводородов с различными соединениями:
твердые комплексы, образующиеся в результате сильных специфических (электронных донорно-акцепторных) взаимодействий;
аддукты туннельного типа с полостями в кристаллической решетке в виде каналов, в которых находятся молекулы углеводородов или других соединений линейного строения с поперечным сечением, соответствующим диаметру канала;
клатратные соединения с полостями в кристаллической решетке в виде клеток, размеры и формы которых соответствуют молекулам включаемого компонента — «гостя».
Все типы аддуктов и комплексов получили применение для группового разделения нефти и нефтяных фракций.
Молекулярные соединения аренов с сильными электроно-акцепторными соединениями. Арены, в особенности полициклические с конденсированными ароматическими кольцами, являются активными донорами п-электронов и могут образовывать твердые комплексы с сильными электроноакцепторными соединениями.
Давно известны комплексы нафталиновых и других полициклоароматических углеводородов с пикриновой кислотой (2,4,6-тринитрофенолом). Пикратным методом из ароматической части фракций 200—300 С был выделен нафталин и ряд его гомологов. Комплексы образуются при нагревании и выделяются вымораживанием, причем обработку ароматической фракции пикриновой кислотой для повышения степени извлечения нафталиновых углеводородов повторяют несколько раз,, пока не начинает вымораживаться чистая пикриновая кислота. После перекристаллизации пикратов их разлагают обработкой эфирных растворов — 2—3%-м водным раствором щелочи.
Для выделения нафталиновых углеводородов из керосиновой фракции в качестве акцепторов можно использовать и другие полинитросоединения, причем стабильность образуемых ими комплексов изменяется в следующем ряду:

2,4,7-тринитрофлуоренон > 1,3,5-трииитробензол > пикриновая кислота > > 2,4,6-тринитротолуол.

Комплексообразованием с п-нитробензойной кислотой можно выделять 2,6-диметилнафталин из технической смеси диметил-нафталинов, а с 3,5-динитробензойной кислотой — мезитилен из смеси аренов С9.

Стабильные комплексы с нафталином и его алкилпроизводными (в особенности с осевой симметрией молекул) с температурами плавления ~ 150 - 230 С дает пиромеллитовый диангидрид.
Ряд гомологов бензола образует достаточно стабильные комплексы с гексафторбензолом. Предложен, например, метод разделения изомеров ксилола кристаллизацией в присутствии гексафторбензола, образующего наиболее стабильные комплексы с п-ксилолом.
Один из промышленных методов выделения п-ксилола из смеси аренов С8 основан на комплексообразовании с борофтороводородной кислотой BF3HF, возможно использование для этой цели и трифторметансульфокислоты F3CSO3H.
Сильным электроноакцепторным соединением является и пентафторнитробензол, образующий твердый комплекс с бензолом.
Для образования комплексов с аренами могут использоваться и неорганические акцепторы — хлорид или бромид алюминия, хлорид сурьмы(Ш).
Комплексообразование углеводородов с карбамидом и тиокарбамидом. Комплексы углеводородов с карбамидом (мочевиной) и тиокарбамидом (тиомочевиной) относятся к аддуктам туннельного типа.
В 1940 г. немецкий исследователь М. Ф. Бенген установил, что алифатические соединения с линейной структурой молекул, в частности н-алканы, содержащие шесть и более атомов углерода, образуют кристаллические комплексы с карбамидом. Разветвленные алканы, циклоалканы и арены, как правило, ие способны к комплексообразованию с карбамидом.
Карбамид — сильно ассоциированное соединение из-за образования межмолекулярных водородных связей.

Как показали рентгеноструктурные исследования, карбамид имеет тетрагональную кристаллическую решетку, которая при образовании комплекса изменяется на гексагональную. Структура комплекса характеризуется расположением ассоциированных молекул карбамида по спирали на гранях правильных шестигранных призм. Элементарная ячейка состоит из шести молекул карбамида, находящихся на расстоянии 0,37 нм друг от друга. Внутри спирали образуется канал гексагональной формы эффективным диаметром 0,525 нм. Поперечное сечение молекул н-алканов составляет около 0,42 нм, поэтому они хорошо вписываются в канал и удерживаются в нем за счет сил Ван-дер-Ваальса. Молекулы разветвленных алканов, циклоалканоа и аренов имеют критические диаметры, превышающие эффективный диаметр канала, и поэтому, как правило, не способны образовать аддукты с карбамидом.

Стабильность комплексов возрастает с удлинением цепи н-алкана. Так, температура разложения комплекса н-гексана с карбамидом 38°С, энтальпия разложения комплекса 21 кДж/моль, а для н-додекана — соответственно 90,9°С и 54 кДж/моль. Образование аддукта с пентаном и н-алканами с С < 5 энергетически невыгодно, и при комнатной температуре и атмосферном давлении выделить соответствующие комплексы не удается.
Аддукты с карбамидом способны образовывать не только н-алканы, но и углеводороды других классов, молекулы которых имеют достаточно длинный алкильный неразветвленный заместитель. Так, если метильная группа находится в положении 2,3,4 или 5 молекулы монометил алкан а, то для возможности образования аддукта в линейном участке цепи должно содержаться не менее соответственно 11, 14, 15 или ,16 углеродных атомов. Циклические углеводороды также способны к образованию комплексов, если боковая цепь линейного строения содержит не менее 18 углеродных атомов.
По этой причине селективность выделения н-алканов карбамидным методом снижается с повышением пределов кипения нефтяной фракции, и наиболее эффективна карбамидная депарафинизация сырья с концом кипения ^350 °С. Концентрат, выделенный из более высококипящей фракции карбамидным методом, например из фракции 350—500°С вакуумного газойля западносибирской нефти, содержит всего 73 % н-алканов, остальное приходится на долю изоалканов (около 11 %), циклоалканов (14%) и аренов (2%).
Комплексы н-алканов с карбамидом относятся к нестехиометрическим соединениям включения — соотношение между числом молей компонентов в комплексе нецелочисленное. Так, молярное соотношение карбамид/н-алкан составляет для гексана 5,43, для додекана 9,42 и т. д. Предложены различные эмпирические формулы для расчета этого соотношения, из которых следует, что на каждую СН2-группу молекулы н-алкана должно приходиться около 0,7 моль карбамида.
Комплексы с тиокарбамидом NH2C(S)NH2 также относятся к соединениям включения туннельного типа. Водородные связи с участием атома серы менее стабильны, чем в случае карбамида, расстояние между молекулами тиокарбамида соответственно увеличивается и образуется канал с большим диаметром (0,6—0,7 нм по данным различных авторов). Поэтому в качестве молекул «гостя» могут выступать алканы изостроения, циклоалканы, некоторые арены. К ним относятся углеводороды изопреноидного строения, циклогексан, декалин, адамантан, дурол. н-Алканы, как правило, не дают стабильных аддуктов с тиокарбамидом, так как поперечное сечение их молекул значительно меньше диаметра канала и сравнительно слабые вандерваальсовы силы притяжения не способны удерживать н-алканы внутри канала.
Тиокарбамид — менее селективный разделяющий агент, чем карбамид. Тиокарбамидный метод позволяет лишь концентрировать определенные группы углеводородов в препаративно-аналитических целях. Так, в сочетании с другими методами комплексообразование с тиокарбамидом позволяет получать, концентраты алканов изопреноидного строения, адамантана и его гомологов, разделять цис- и транс-диалкилциклогексаны с очень близкими температурами кипения.
Комплексообразованием с тиокарбамидом в присутствии активатора (метанола) предложено выделять метилциклопентан и циклогексан.
Соединения включения туннельного типа способны образовывать с углеводородами и ряд других веществ — дезоксихолевая кислота (диаметр канала 0,5—0,6 нм), 4,4'-дигидрокситрифенилметан (канал 0,6—0,65 нм), циклодекстрин (канал 0,9—1,0 нм). Однако эти соединения не получили столь широкого применения в практике разделения нефтей, как карбамид или тиокарбамид.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.