Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ОСНОВНАЯ ЧАСТЬ (160 мин.)



ПРАКТИЧЕСКОЕ ЗАНЯТИЕ

по дисциплине "ХИМИЯ ПРОЦЕССОВ ГОРЕНИЯ"

Для специальности 280705.65 – пожарная безопасность

СМК-УМК 4.4.2-40-2013

Тема 4.: Пожароопасные свойства кислородсодержащих органических соединений

 

Занятие № 4.3: Жиры и масла.(4 час.)

 

  Должность Фамилия/ Подпись Дата
Разработал Доцент каф.ФХОПГиТ, к.х.н. Кожевникова Н.Ю.  
Проверил Проф.каф.ФХОПГиТ , к.х.н., доц. Коробейникова Е.Г.  

I. Цели занятия

1.Учебная: обучение и закрепление знаний об особенностях строения и физико-химических, пожарных свойств сложных эфиров- жиров и масел; решение задач: определение иодного числа жиров и масел, определение продуктов горения.

2. Воспитательная: воспитывать у обучающихся ответственность за подготовку к практической деятельности; стремление к углубленному освоению материала по теме занятия; обучение методам самостоятельной работы с учебными материалами и работе в группе.

II. Расчет учебного времени

Основные вопросы Содержание вопросов, методика проведения Время
  ВВОДНАЯ ЧАСТЬ Принятие доклада, проверка наличия слушателей, объявление темы занятия и основных вопросов. Тестирование, опрос.
  ОСНОВНАЯ ЧАСТЬ  
  Учебныевопросы    
1. Свойства и получение жиров Преподаватель рассматривает строение, получение и основные физико-химические и пожароопасные свойства жиров и масел.  
2. Расчет иодного числа жиров и масел.   Преподаватель рассматривает алгоритм расчета иодного числа жиров и расчет объема продуктов горения глицеридов. Далее курсанты самостоятельно выполняют расчеты.  
  ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ Преподаватель характеризует работу курсантов на занятии, отвечает на вопросы. Курсанты записывают в тетрадь задание на самоподготовку по теме занятия. Преподаватель объявляет правила выполнения задания и срок его сдачи.

 

III. Учебно-материальное обеспечение

1. Технические средства обучения: мультимедийная система, компьютерная техника, интерактивная доска.

 

IV. Методические рекомендации преподавателю

По подготовке и проведению практического занятия

ВВОДНАЯ ЧАСТЬ (13 мин.)

Преподаватель проверяет наличие слушателей (курсантов), объявляет тему, учебные цели и вопросы занятия, последовательность их отработки, ориентировочное время выполнения задания и напоминает, что к концу занятия каждый слушатель должен выполнить.

Проводится тестирование, опрос.

ОСНОВНАЯ ЧАСТЬ (160 мин.)

Вопрос № 1. Свойства и получение жиров (70 мин).

Глицеридами называются сложные эфиры карбоновых кислот и трехатомного спирта глицерина. Они входят в состав чрезвычайно важных веществ – жиров

Природные жиры животного и растительного происхождения – это смеси сложных эфиров, образованных высшими карбоновыми кислотами и трехатомным спиртом глицерином, т.е. смеси глицеридов высших кислот.

Значение жиров исключительно велико. Прежде всего, они - важнейшая составная часть пищи человека и животных наряду с углеводами и белковыми веществами. Суточная потребность взрослого человека в жирах 80-100г.

В большинстве случаев в состав жиров входят полные эфиры глицерина, образовавшиеся в результате этерификации всех трех его гидроксильных групп и называемые триглицеридами, поэтому строение жиров может быть выражено следующей общей формулой:

 

(a) СН2 – О – ОC –R

½ ½

(b)СН – О – ОC – R

½ ½

(a')СН2 – О – ОС – R

 

Остатки ВЖК могут занимать различные положение при углеродных атомах молекулы глицерина (последние обозначают a, b, a', как показано выше в общей формуле триглицерида).

В настоящее время из жиров выделено несколько десятков разнообразных предельных и непредельных кислот; почти все они содержат неразветвленные цепи углеродных атомов, число которых, как правило, четное и колеблется от 4 до 26. Однако именно высшие кислоты, преимущественно с 16 и 18 углеродными атомами – главная составная часть всех жиров. Наиболее важные - пальмитиновая С15Н31СООН и стеариновая С17Н35СООН. Из непредельных высших кислот в жирах чаще всего встречается олеиновая С17Н33СООН (с одной двойной связью). Очень важны также незаменимые полиненасыщенные кислоты – линолевая С17Н31СООН (с двумя двойными связями) и линоленовая С17Н29СООН (с тремя двойными связями).

Кислоты входят в состав жиров главным образом в виде смешанных триглицеридов, т.е. таких, которые содержат остатки двух или трех разных кислот.

 

Получение жиров

 

В настоящее время практическое значение имеет лишь получение жиров из природных источников – животных и растений; синтез жиров пока экономически невыгоден.

Животные жиры добываются из жировых тканей различных животных, из молока. Они содержат в своем составе преимущественно стеариновую и пальмитиновую кислоты и сравнительно небольшое количество олеиновой кислоты. Поэтому в большинстве своем они являются твердыми или мазеобразными веществами (говяжье, баранье или свиное сало). Однако встречаются и животные жиры, содержащие значительное количество непредельных кислот и представляющие собой жидкие вещества (ворвань, тресковый жир).

. . Растительные жиры обычно называют маслами. Их добывают из семян и мякоти плодов различных растений. Они отличаются высоким содержанием олеиновой и других непредельных кислот и содержат лишь незначительное количество стеариновой и пальмитиновой кислот (подсолнечное, оливковое, хлопковое, льняное и др. масла). Лишь в некоторых растительных жирах преобладают предельные кислоты, и они являются твердыми веществами (кокосовое масло, масло какао и др.).

Реакция получения триглицерида олеодистеарида, состоящего из остатка олеиновой кислоты и двух остатков стеариновой кислоты может быть записана следующим образом:

 

 

СН2 – ОН + НООС – С17Н35 СН2 – О – ОС – С17Н35

½ ½

СН – ОН + НООС – С17Н33 ® СН – О – ОС – С17Н33 + 3Н2О

½ ½

СН2 – ОН + НООС – С17Н35 СН2 – О – ОС – С17Н35

глицерин ВЖК олеодистеарин

 

Глицерин – постоянная составная часть жиров, т.е. входит во все природные жиры. Кислоты же, входящие в состав жиров весьма разнообразны.

 

 

Физические свойства жиров

 

Жиры бывают животного и растительного происхождения. Некоторые жиры при обычной температуре – твердые вещества (например, баранье и говяжье сало), другие – мягкие или даже жидкие. Жидкие жиры обычно называют маслами.

Все жиры легче воды (их плотность 900 – 950 кг/м3). Жиры – плохие проводники тепла и электричества. Коэффициент теплопроводности 0,170 Вт/(м.К), диэлектрическая постоянная (30-40)·10-30 Кл.м.

Температура вспышки большинства жиров 270-330°С, температура самовоспламенения 340-360 °С; характеристикой жира является также так называемая температура дымообразования (дымления), при которой происходит визуально заметное образование дыма вследствие разложения жира и лежит в пределах 160-230°С.

Жиры неограниченно растворимы в диэтиловом эфире. бензоле, хлороформе, частично растворимы в этаноле (5-10%) и ацетоне, практически не растворимы в воде, но образуют с ней эмульсии.

В 100 г воды эмульгируются 10 мг говяжьего жира, 50 мг свиного.

Жиры растворяют небольшие количества воды (0,1-0,4%) и значительные количества газов (7-10% по объему N2, H2, О2 и до 100% СО2).

Растворимость Н2, N2, O2 возрастает с ростом температуры, растворимость СО2 падает.

Жиры не имеют постоянной температуры плавления или застывания, т.к. представляют собой многокомпонентные смеси. Температуры плавления жиров зависит от того, какие кислоты участвуют в образовании входящих в их состав глицеридов.

Жиры, содержащие преимущественно остатки предельных кислот, имеют наиболее высокие tпл и представляют собой твердые или мазеобразные вещества.

Жиры , в составе которых содержатся остатки главным образом непредельных кислот – жидкости с более низкими температурами плавления. Так, трипальмитин и тристеарин – твердые вещества, а триолеин – жидкость с tпл –40С. Определение температуры плавления жиров дает некоторое представление о их составе. Ниже других застывает ореховое масло (– 270С), выше - баранье сало (+550С).

 

Химические свойства жиров

 

1. Гидролиз (омыление) жиров

 

В результате омыления жиров щелочами образуются соли ВЖК – мыла и глицерин:

СН2 – О – ОС – С17Н35 СН2 – ОН

½ ½

СН – О – ОС – С17Н35 + 3NaOH ® СН – ОН + 3 С17Н35СООNa

½ ½

СН2 – О – ОС – С17Н35 СН2 – ОН

триглицерид глицерин стеарат натрия

стеариновой кислоты (мыло)

 

2. Гидрогенизация (гидрирование) жиров

 

Гидрогенизацией жиров называется процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жиров.

Жидкие жиры и масла путем каталитического присоединения водорода по месту двойных связей входящих в их состав непредельных кислот могут быть превращены в твердые жиры. Это (отверждением) жиров. Впервые метод гидрогенизации был разработан в 1906г. русским ученым С.А. Фокиным, а в 1909г. им же осуществлен в промышленном масштабе.

Гидрогенизацию ведут в присутствии мелкораздробленного металлического никеля (катализатор) при 160-240 оС, пропуская в нагретое масло под давлением до 3 атм очищенный газообразный водород. При этом непредельные триглицериды превращаются в предельные.

Например, остатки олеиновой, линолевой и линоленовой кислот, присоединяя два, четыре или шесть атомов водорода, превращаются в остатки стеариновой кислоты.

 

СН2 – О – ОС – С17Н33 + Н2 СН2 – О – ОС – С17Н35

½ Ni ½

СН – О – ОС – С17Н31 + 2Н2 ® СН – О – ОС – С17Н35

½ ½

СН2 – О – ОС – С17Н29 + 3Н2 СН2 – О – ОС – С17Н35

 

Твердый жир, получаемый путем гидрогенизации жидких растительных масел или жиров морских животных и рыб, называется саломасом. Его широко применяют для производства искусственного твердого пищевого жира – маргарина, а также в мыловарении и др.

Название “маргарин” происходит от греческого слова “маргарон”, т.е. жемчуг. Впервые метод получения маргарина путем гидрогенизации растительных жиров был предложен французский химиком Меж-Мурье. Маргарин принес ему славу – он выиграл приз, назначенный Наполеоном III за изобретение заменителя сливочного масла.

Различные сорта маргарина получают, смешивая саломас с молоком, в некоторых случаях – с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло. Приятный запах маргарина достигается введением специальных ароматизаторов – сложных композиций различных веществ, Непременной составной частью ароматизаторов является диацетил (СН3—ОС—ОС—СН3) –жидкость желтого цвета, содержится в коровьем масле

Гидрогенизация жиров имеет очень большое практическое значение. Потребность в твердых жирах в народном хозяйстве огромна. Из них получают наиболее ценные сорта мыл. Они удобнее для употребления в пищу. Кроме того, твердые жиры, поскольку они не содержат двойных связей (или содержат их значительно меньше, чем жидкие жиры), труднее окисляются и поэтому менее подвержены порче (прогорканию) при хранении. Применение гидрогенизации жидких жиров и масел дает возможность восполнить недостаток твердых жиров.

При более значительной гидрогенизации жиров жирные кислоты превращаются в высокомолекулярные спирты, применяющиеся для производства синтетических заменителей мыла.

 

3. Окисление жиров

 

Характерным свойством жиров, как и других органических веществ, является окисление. Эта реакция сопровождается выделением 39 кДж энергии на 1 г жира, что более чем в два раза превосходит тепловой эффект окисления углеводов или белков.

Другая особенность окисления жиров состоит в том, что в результате окисления из 1 г жира образуется до 1, 4 г воды. Это существенный вклад в поддержание общего водного баланса организма. Отдельные виды обитающих в пустынях животных (например, верблюды) такой эндогенной водой полностью удовлетворяют свои потребности во влаге.

Прогоркание жиров проявляется в появлении специфического запаха и неприятного вкуса, связанное с образованием низкомолекулярных карбонильных соединений.. Различают два вида прогоркания - биохимическое и химическое.

Биохимическое прогоркание характерно для жиров, содержащих значительное количество воды и примеси белков и углеводов (например, для коровьего масла). Под воздействием содержащихся в белках ферментов (липаз) происходит гидролиз жира и образование свободных жирных кислот. Микроорганизмы, развивающиеся в жире, выделяют другие ферменты - липооксидазы, под действием которых жирные кислоты окисляются до β-кетокислот. Во избежание этого производится тщательная очистка жиров от примесей белковых веществ, хранение в условиях, исключающих попадание микроорганизмов, и при низкой температуре, а также добавка консервантов (NaCl, бензойная кислота).

Химическое прогоркание – результат окисления жиров под действием кислорода воздуха (автоокисление). Первая стадия – образование пероксидных радикалов при атаке молекулярным О2 углеводородных остатков как насыщенных, так и ненасыщенных жирных кислот. Реакция катализируется светом, теплом и соединениями, образующими свободные радикалы. Образовавшиеся радикалы инициируют неразветвленные и разветвленные цепные реакции, а также распадаются с образованием ряда вторичных продуктов - гидроксикислот, кетонов и альдегидов. Альдегиды и кетоны вызывают изменение вкуса и запаха жира.

Для жиров, в которых преобладают насыщенные жирные кислоты, характерно образование кетонов (кетонное прогоркание), для жиров с высоким содержанием ненасыщенных кислот – альдегидное прогоркание. Для замедления и предотвращения химического прогоркания используют ингибиторы радикальных реакций, а также соединения, образующие комплексы с тяжелыми металлами (например, лимонная, аскорбиновая кислоты).

От количества кратных связей зависит и способность масел к высыханию. Растительные масла, содержащие в своем составе ненасыщенные связи, при окислении образуют твердую тонкую прозрачную пленку, которая носит название “линоксин”. Масло высыхает тем легче, чем больше двойных связей имеют кислотные остатки.

 

Масла, по способности к высыханию делятся на
высыхающие полувысыхающие Невысыхающие
льняное, ореховое, маковое, конопляное подсолнечное, хлопковое оливковое, кокосовое

 

Чтобы ускорить процесс высыхания, высыхающие масла варят и прибавляют к ним так называемые сиккативы – катализаторы, ускоряющие высыхание. В качестве сиккативов используются соли марганца, кобальта, свинца. Высыхающее масло, подвергнутое нагреванию (варке) в присутствии сиккативов, называется олифой.

Процесс высыхания олифы очень сложен и еще полностью не изучен. Известно, что в основе высыхания лежит процесс полимеризации остатков непредельных кислот, образующих высыхающие масла, а также, возможно, их окисления. Кислород воздуха, так же как и сиккативы, является катализатором полимеризации.

Олифа применяется для приготовления масляных красок, для приготовления клеенки, линолеума и т.д.

Мировое производство жиров 57031 тыс. т/год. Из общего производства растительные жиры составляют 55-60%, жиры наземных животных – 35-40%, морских животных и рыб – 5%. Более 2/3 производимых жиров - пищевые.

 

Воски

 

Воски (воска) – это сложные эфиры жирных кислот и одноатомных высокомолекулярных (высших) спиртов. Это жироподобные вещества растительного и животного происхождения. Только вместо глицерина в состав восков входят высшие спирты.

По внешнему виду, физическим свойствам и источникам происхождения жиры и воска имеют много общего, однако воски очень устойчивы к воздействию химических реагентов и не изменяются при длительном хранении.

Существует простой способ, помогающий их различить. При сильном нагревании жир издает резкий неприятный запах акролеина, а воск при этом имеет приятный запах.

Воски бывают растительные, животные, ископаемые и синтетические.

 

Растительные воски

 

Карнаубский воск покрывает листья бразильской пальмы Copernicia cerifera. Представляет собой сложный эфир триаконтанола СН3(СН2)29ОН и тетракозановой кислоты СН3(СН2)22СООН. Для получения карнаубского воска листья пальмы высушивают, из них выколачивают порошок, который вываривают в воде и выливают в формы. 2000 листьев дают около 16 кг воска. Используют карнаубский воск для изготовления мастик, кремов для обуви.

Пальмовый воск находится в углублениях кольчатого ствола восковой пальмы, откуда его соскабливают. Одно дерево дает 12 кг воска.

Японский воск добывают из лакового дерева, произрастающего в Японии и Китае.

Растительными восками покрыты фрукты, овощи и ягоды (например, черника).

 

Животные воски

 

Пчелиный воск – наиболее известный из этого вида восков – представляет собой пальмитиномирициловый эфир.

С15Н31 – С = О

½

О – С31Н63

 

Шерстяной (шерстный) воск – ланолин – обильно покрывает шерсть животных.

Спермацет содержится в костных черепных углублениях некоторых видов китов, особенно кашалотов. На 90 % состоит из пальмитиноцетилового эфира:

С15Н31 – С = О

½

О – С16Н33

Китайский воск вырабатывается червецом, который обитает на китайском ясене и образует на нем восковой покров. Содержит сложный эфир гексакозановой кислоты СН3(СН2)24СООН и гексадеканового спирта СН3(СН2)15ОН.

К воскам относятся кожное сало и ушная сера.

Воск бактерий покрывает поверхность кислотоупорных бактерий, например, туберкулезных, обеспечивая их устойчивость к внешним воздействиям. Содержит сложные эфиры миколевой кислоты С88Н172О2 и октадеканола С20Н42О.

 

Ископаемые воски

 

Торфяной воск получают экстракцией бензином при 800С верхового битуминозного торфа.

Буроугольный воск (монтан-воск) извлекают бензином из бурого битуминозного угля.

Горный воск – озокерит – минерал из группы нефтяных битумов.

Синтетические воски получают на основе нефтяных и смоляных парафинов и их производных.

 

Воски применяют более чем в 200 отраслях народного хозяйства. Они входят в состав политур, защитных композиций для металлов, тканей, бумаги, кож, дерева; как изолирующий материал; компоненты мазей в косметике и медицине.

 

 

Вопрос № 2. Расчет иодного числа жиров и масел. (90 мин).

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.